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Abstract

We analyse the local geometric structure of self-similar sets with open set condition through

the study of the properties of a distinguished family of spherical neighbourhoods, the typical

balls. We quantify the complexity of the local geometry of self-similar sets, showing that there are

uncountably many classes of spherical neighbourhoods that are not equivalent under similitudes.

We show that, at a tangent level, the uniformity of the Euclidean space is recuperated in the

sense that any typical ball is a tangent measure of the measure ν at ν-a.e. point, where ν is any

self-similar measure. We characterise the spectrum of asymptotic densities of metric measures in

terms of the packing and centred Hausdorff measures. As an example, we compute the spectrum

of asymptotic densities of the Sierpinski gasket.
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1 Introduction and main results

In order to gauge the vastness of the set of spherical neighbourhoods of a metric space X, it is useful

to consider the quotient spaces SphX/ ≃F , where SphX is the set of spherical neighbourhoods of X

and ≃F is the equivalence class associated with some group F of self-mappings of X : B ≃F B′ ⇔

B = f(B′) for B, B′ ∈ SphX and some f ∈ F . The regularity of the Euclidean space Rn is made clear

by the fact that if Sn is the set of similarities of Rn, then SphRn/ ≃Sn consists of a unique equivalence

class.

In this paper, we study the local geometry of a self-similar set E ⊂ Rn satisfying the open set

condition (OSC), geometry which is described by the spherical neighbourhoods of E as a metric

subspace of Rn, i.e. by restricted balls of the form B ∩ E, where B is a Euclidean ball. For general

points x, y ∈ E, if B(x, d) denotes the closed Euclidean ball centred at x and with radius d, then

B(x, d) ∩E and B(y, d) ∩E are not equivalent by translation, and B(x, d) ∩E and B(x, d′) ∩E with

d ̸= d′ are not homothetic-equivalent. Using classical tools of fractal geometry, namely, the s-densities

of metric measures on balls (see Definitions 21 and 22), and results by Marstrand [1], Hutchinson [2]

and Preiss [3], together with the results in Sec. 3.2, we are able to prove that, for general self-similar

sets with OSC, there are uncountably many equivalence classes in the quotient spaces SphE/ ≃Sn
.

This gives account of the complexity of the purely deterministic self-similar geometry.

In spite of these facts, the literature has established the existence of a strong kind of regularity, on

a tangent level and on average, in the neighbourhoods of a self-similar set.

Recall that a self-similar set is defined as the unique compact set E ⊂ Rn that satisfies the basic

equation of self-similarity

E = ∪m−1
i=0 fi(E). (1)

for a given system Ψ = {fi}i∈M , M := {0, 1, . . . ,m− 1} of contractive similitudes in Rn. We shall

assume that the system Ψ satisfies the OSC, meaning that there is an open set O ⊂Rn such that

fi(O) ⊂ O for all i ∈ M and fi(O)∩fj(O) = ∅ for i, j ∈ M, i ̸= j. We shall refer to such a set
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O as a feasible open set for Ψ. We can assume, without loss of generality, as we shall from now on,

that O∩E ̸= ∅ holds, also called strong open set condition (SOSC) (cf. [4] and [5], see also [6]). If

fi(E) ∩ fj(E) = ∅ for i, j ∈ M, i ̸= j, it is said that the strong separation condition (SSC) holds, in

which case the OSC is also fulfilled.

We want to understand the local geometry of E through the study of the local behaviour of the

metric s-measures,

Ms⌊E :=
{
µ, Hs⌊E , Hs

Sph⌊E , Cs⌊E , P s⌊E
}

(2)

where s is the similarity dimension of E, dimE, that is, the unique real number s that satisfies∑
i∈M rsi = 1, ri being the contraction constant of the similarity fi, i ∈ M. Here β⌊E stands for a

measure β restricted to the set E. The measures

Ms :=
{
Hs, Hs

Sph, Cs, P s
}

(3)

are the s-dimensional Hausdorff measure, spherical Hausdorff measure, centred Hausdorff measure and

packing measure, respectively. Any two measures in Ms⌊E are multiple of each other, moreover, in

the case that s takes the integer value n, they are also multiple of the n-dimensional Lebesgue measure.

Each measure in Ms⌊E highlights different basic geometric properties of subsets of Rn. For α ∈ Ms⌊E ,

0 < α(E) < ∞ holds and E is called an s-set (see [7] for further details and Sec. 2.2 for the definitions

of the measures in Ms). We shall present in Sec. 2.1 below the natural probability measure µ. For the

time being, we can see it as the normalised measure, α
α(E) of any other α ∈ Ms⌊E .

The results in this paper about the regularity of the metric measures are also shared by the

wider class of self-similar measures, MS(E) (see [2] and Sec. 2.1 for a definition). Whereas the

metric measures, Ms, convey a strong geometric meaning, self-similar measures are an essential tool

in multifractal analysis of logarithmic densities, a topic that has generated a vast amount of literature

for the past 30 years.

1.1 Scenery flow, tangent distribution and tangent measures

Let ν be a Radon measure on Rn and let x be a point in the support of ν. We can access the local

geometry of ν⌊E around x through the following zooming process: let Tx,t(y) = t(y−x), t > 0, be the

homothety that maps the ball B(x, t−1) onto the unit ball D := B(0, 1). Let νx,t be the probability
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measure on D obtained from the normalisation of the restriction to D of the image measure of ν⌊E

under the homothety Tx,t. IfM(D) denotes the set of Radon measures onD, then the mapping t → νx,t

can be considered as a measure-valued time series that takes values in the metric space M(D) endowed

with the weak topology. This time series is called scenery flow of ν around x (cf. [8]). The empirical

distributions Φx,t(ν), t > 0, associated with such “time” series, are probability measures on M(D) (so

they belong to the set M(M(D)) of Radon measures on M(D)). The empirical distribution Φx,t(ν)

gives weight to a set A ⊂ M(D) according to the rate of the time interval [0, t] that the “empirical”

data δνx,t (unit mass at νx,t) stay in A. If the empirical distribution Φx,t(ν) converges to a limit Φx(ν)

as t tends to infinity, then the limiting distribution Φx(ν) is called the tangent distribution of ν at x

(see [9]).

S. Graf [10] proved that if E is a self-similar set with OSC and ν ∈ MS(E), then the limit Φx(ν)

exists ν-a.e. x, and it does not depend on x. Moreover, he constructed an explicit formula for the

tangent distribution. This author gave credit for the first of these results to C. Bandt by [9], and

Bandt in [11] gives credit for the same result to S. Graf by [10] (indeed a most refreshing case).

M. Arbeiter [12], C. Bandt [11] and A. Pyörälä [13] extended these results in different ways. The

uniqueness and independence of the limit Φx(ν) from x is what M. Gavish, [14], calls, when displayed

by a measure, the uniform scaling scenery property of such a measure. This means that, at a tangent

level and in this sense, the flow scenery recovers the uniformity of the Euclidean space.

Remark 1 There is another way to pass to the limit at the tangent level that leads to tangent measures,

a concept prior to tangent distributions introduced by D. Preiss [3]. There, starting from a measure

ν in the set M(Rn) of Radon measures on Rn, he considers unrestricted zoomings νx,t of ν at x by

homotheties Tx,t as above. Instead of performing an averaging procedure, Preiss considers non-null

and locally finite limits, in the vague topology of M(Rn), of sequences

{cnνx,tn} with tn
n→∞→ ∞ and cn > 0.

Such limit points are called tangent measures of ν at x, and Tan(ν, x) denotes the set of all such limits.

In our approach, following C. Bandt [9], the measures νx,tn are restricted and normalised zoomings,

but the zoomings are through general expanding similitudes, rather than only homotheties.
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Let In be the group of isometries of Rn. We may define, in the set M(Rn), the equivalence

relationship

α ∼= β ⇔ there is a g ∈ In and a λ > 0 such that β = λ (g♯(α)), (4)

where g♯(α) is the image measure of α under g, i.e. g♯(α)(A) = α(g−1(A)) for α-measurable A ⊂ Rn.

Thus, we identify two measures if they are equal up to an isometry (see, for instance, [11], where

equivalent measures up to isometries are identified in the construction of tangent measures), and we

also identify all measures in the half-straight line {λα : λ > 0, α ∈ M(Rn)} . For α ∈ M(Rn), let α̃

denote the equivalence class in M(Rn)/ ∼= to which α belongs, i.e.

α̃ = {β ∈ M(Rn) : β ∼= α} (5)

Given a measure ν ∈ M(Rn), we now consider the zoomings νx,tn be of the form (gn)♯ ν⌊B(x,dt−1
n )

where gn is a similitude of contraction ratio tn, d ≤ 1, and x ∈ spt(ν) (see (23)). We define the quotient

space M̃(Rn) and the set of tangent equivalence classes of measures, T̃ an(ν, x), by

M̃(Rn) = {α̃ : α ∈ M(Rn)} (6)

T̃ an(ν, x) =
{
α̃ : there is a sequence cnνx,tn

w−−−−→
n→∞

α,with tn −→
n→∞

∞, α ̸= 0 and α ∈ M(Rn)
}
,(7)

where
w→ denotes the weak convergence of measures on M(Rn). It turns out that, in the course of

our research, the case in which the convergence of the magnifications occurs in the strong topology

of measures in M(Rn) is relevant (see Sec. 1.2 below for a discussion of this result). We shall write

T̃ an
st
(ν, x) for the set of equivalence classes, w.r.t. ∼=, of such strong limits.

Remark 2 In our definition (7) any two zoomings, β = (gn)♯ ν⌊B(x,dt−1
n ) and β′ = (hn)♯ ν⌊B(x,dt−1

n ) of

a given spherical neighbourhood B(x, dt−1
n ) are considered as valid steps in the construction of a tangent

limiting measure α, where gn, hn are different similitudes. This can be considered as the identification

of β and β′ as equivalent zoomings. Notice that β′ =
(
g−1
n ◦ hn

)
♯
β and that g−1

n ◦ hn is an isometry.

Thus, the equivalence relationship (4) and the definition in (7) are consistent.

In contrast to the enlightening results obtained in [10], [11] and [12] on the uniform scaling scenery

property of self-similar measures, to the best of our knowledge, the members of Tan(ν, x) for ν ∈

MS(E) remain unknown. Several natural issues arise here: What is the relationship between Φx(ν)
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and Tan(ν, x)? What do the measures in Tan(ν, x) look like? Do they display some uniform property?

As for the first question, see Proposition 1 in [15]. Below, we give a partial answer to the second and

third questions for measures in MS(E) (see (10) and Theorem 12).

1.2 Typical balls

A distinguished class of neighbourhoods of E, in terms of which our results are expressed, is the class

of typical balls.

Definition 3 A ball B(x, d) is said to be typical if x ∈ E and B(x, d) ⊂ O, where O is some feasible

open set. We shall write B for the set of typical balls.

The family of typical balls is invariant under the semigroup G generated by Ψ (see Sec. 2), since,

for f ∈ G, it follows from f(O) ⊂ O that f(B) ⊂ B holds. Consider now the set of typical spherical

B-measures,

MS(B) := {α⌊B : B ∈ B, α ∈ MS(E)} . (8)

It is well known [2] that, for any x ∈ E, the set {f(x) : f ∈ G} is dense in E, so the balls in B are

typical in the sense that, if B ∈ B, then similar copies of B are densely spread over E at small scales

by the action of G. These copies are a countable set of balls. As Theorem 12 shows, the measures in

MS(B) are also typical in a deeper sense since, for any f ∈ G, B ∈ B and α ∈ MS(B), the equality

α⌊f(B)= pff♯
(α⌊B) holds for a certain constant pf < 1 associated with f. This means that the images

of typical balls are identical copies, up to the constant pf , to the original ones not only as subsets, but

also from the point of view of any property expressible in terms of self-similar measures. Moreover,

in Theorem 12 it is shown that, for any typical ball B(x, d), for any measure α ∈ MS(E) and for all

points y in a set Ê with full α-measure, there is a sequence of balls {B(y, dk)} with dk → 0, a sequence

{fk} of similitudes in G and constants p−1
fk

→ ∞, such that

p−1
fk

(
f−1
k

)
♯

(
α⌊(B(y,dk)

) st−−−−→
k→∞

α⌊B(x,d), (9)

where the convergence in (9) is in the sense of the strong topology of Radon measures.

Theorem 12 also states that, for all x ∈ Ê and α ∈ MS(B),

M̃S(B) ⊂ T̃ an
st
(α, x) (10)
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holds, where

M̃S(B) = {α̃ : α ∈ MS(B)} , (11)

(see (5) for the notation α̃).

The results above imply that the use of general zooming similitudes, grants the strong convergence

of the zoomings to the tangent measures, whereas in the ordinary spaces of tangent measures, where

only homotheties are allowed, convergence can only be ensured in a weak topology sense. See Sec.

3.1.1 below for further details on identifications and topologies of measures.

Remark 4 Putting the results in Sec. 3.3, described in the first paragraph of this section, together

with (10), we see that the self-similar scenery at x ∈ E depends on x on large scales, meaning that

there is a broad variety of balls B(x, d) for varying x that, moreover, also vary with d for fixed x.

Additionally, on a tangent scale, for each α ∈ MS(B) and each x ∈ Ê, each typical class of measures

in M̃S(B) is a feasible outcome of the zooming process of α at x, so there is a wide variety of limiting

measures in T̃ an
st
(α, x), x ∈ Ê. The uniformity of the self-similar setting emerges here in the fact

that the inclusion M̃S(B) ⊂ T̃ an
st
(α, x) stands true for any x ∈ Ê, so all the points in Ê share the

set M̃S(B) of tangent measures.

1.3 Spectrum of local densities of a self-similar set: the Sierpinski gasket

case

The relevance of the typical balls is stressed by the connection between typical balls and the spectrum

of densities, which in turn determines some basic geometric features of E.

Let α ∈ M(Rn), 0 ≤ s ≤ ∞ and x ∈ Rn. The upper and lower spherical s-densities of α at x are

defined, respectively, by

θ
s

α(x) = lim sup
d→0

θsα(x, d), (12)

θsα(x) = lim inf
d→0

θsα(x, d), (13)

where the s-density of the ball B(x, d), θsα(x, d), is given by

θsα(x, d) =
α(B(x, d))

(2d)s
.
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Here the zooming process is summarised in only two scalars, (12) and (13). If θ
s

α(x) = θsα(x), then

we write θsα(x) for the common value and call it s-density of α at x. Densities and their connections to

their underlying measures have been studied extensively in the context of geometric measure theory. A

major contribution from Marstrand (Marstrand’s theorem, [1]) asserts that, in the Euclidean setting,

if the s-density θsα(x) exists in a set with a finite and positive α-measure with α ∈ M(Rn), then s is

an integer.

The widest class of subsets of Euclidean spaces that are s-sets (i.e. sets with a finite and positive

α-measure) is either the class of self-similar sets that satisfy the OSC, with s being their similarity

dimension (see (2)), or some variations of it, like the Mauldin and Williams graph-directed construc-

tions, cf. [16], and controlled Moran constructions, cf. [17]. Here, we are interested in the case in

which the self-similar set is unrectifiable and therefore θsα(x) and θ
s

α(x) do not coincide in subsets

with a positive α-measure, case that comprises self-similar sets with non-integer similarity dimension,

and also the case of self-similar sets with an integer dimension and satisfying the strong separation

condition (see the proof of Corollary 25). This leads to the following definition of asymptotic spectrum

of densities of a given measure α at a point and, more in general, in a subset of points.

Definition 5 Given a subset A ⊂ Rn, we define the asymptotic spectrum of (non-logarithmic) spher-

ical s-densities, Spec(α,A), for a locally finite measure α by

Spec(α,A) =

{
lim
k→∞

θsα(x, dk) : x ∈ A and lim
k→∞

dk = 0

}
. (14)

We insert the non-logarithmic epithet above because there is a ample literature on the so-called

multifractal spectrum of logarithmic spherical densities. This literature also focuses on the limiting

behaviour of α on small balls, but the interest is in the upper and lower limits of the quotients

logα(B(x,d))
log d when d → 0 (for x ∈ E) and, in particular, in the fractal dimension of both the (α-

null) sets where these limits exist and take particular values [18] and the sets of divergence points

(see [19], [20], [21]) where the limits do not coincide. Much less is known about the behaviour of

non-logarithmic densities, and the research in this paper can be considered a preliminary step in that

direction.

In particular, in Sec. 3, Theorem 14, we present the knowledge to date about the spectrum of

non-logarithmic α-densities, α ∈ Ms⌊E , of self-similar sets E that satisfy the OSC. In particular, we
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show that Spec(α, x) is contained in the closed interval
[

α(E)
P s(E) ,

α(E)
Cs(E)

]
for all x in a subset Ê of E

with a full α-measure. There arises a natural class of self-similar sets with nice properties, the α-exact

self-similar sets (see Definition 16), which are sets for which the endpoints of such interval belong

to Spec(α, x), x ∈ Ê. Whereas the results for general self-similar sets with OSC presented in Sec. 3

are of a qualitative nature, in Sec. 4 we shall focus on our prime example of α-exact self-similar set,

the Sierpinski gasket S, and exploit its regularity to accurately approximate the range of values taken

by its spectrum, which is the content of Theorem 26. Moreover, we give a full characterisation of the

spectrum of all the points in S, which is given by the union of two closed intervals of positive length,

namely,

Spec(α, S) =
[
α(S)θsµ(z0), α(S)θ

s

µ(z0)
]
∪
[
α(S)

P s(S)
,
α(S)

Cs(S)

]
, α ∈ Ms⌊S ,

where z0 := (0, 0). Using the numerical approximations of θsµ(z0), θ
s

µ(z0) obtained in Sec. 4 and of

P s(S) and Cs(S) obtained in [22] and [23], we can also show that these two intervals are disjointed.

In the case that α ∈ {µ, P s⌊S , Cs⌊S}, we have numerical estimations of these two disjointed intervals.

The Sierpinski gasket is, as far as we know, the first connected self-similar with non-integer dimension

for which the entire spectrum has been computed.

2 Notation and preliminaries

The self-similar set E given in (1) can be parametrised as E = {π(i) : i ∈ Σ} with parameter space

Σ := M∞ and geometric projection mapping π : Σ → E given by π(i) = ∩∞
k=1fi(k)E, where i(k)

denotes the curtailment i1 . . . ik ∈ Mk of i = i1i2 · · · ∈ Σ and fi1...ik = fi1 ◦ fi2 ◦ fi3 ◦ ...fik . We adopt

the convention M0 = ∅ and write M∗ = ∪∞
k=0M

k for the set of words of finite length. Expressed in

this notation, the semigroup generated by Ψ can be written as G = {fi : i ∈ M∗} .

For any i ∈ M∗, we denote by Ei the cylinder sets fi(E), and if i ∈ M0, then fi(E) := E. The sets

Ei are called k-cylinders if i ∈ Mk. We also shorten the notation fi(A) to Ai for a general set A ⊂ Rn.

We write ri := ri1ri2 . . . rik for the contraction ratio of the similitude fi.

Moreover, σ : Σ → Σ shall stand for the shift map given by σ(i1i2i3 . . . ) = i2i3i4 . . . The code
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shift can be projected (as a correspondence) onto E, yielding the geometric shift

T (x) := π ◦ σ ◦ π−1(x), (15)

x ∈ E. The shift orbit of x ∈ E is given by
{
T k(x) : k ∈ N

}
.

Remark 6 Observe that x ∈ T k(A) if and only if fi(x) ∈ A for some i ∈ Mk.

2.1 Self-similar measures

Let P(Rn) be the space of compactly supported probability Borel measures on Rn, let p = (p0, ..., pm−1) ∈

Rm be a probability vector and let Mp: P(Rn) → P(Rn) be the Markov operator defined by

Mp(α) =

m−1∑
i=0

piα ◦ f−1
i , α ∈ P(Rn).

The unique fixed point of the contractive operator Mp is called the self-similar measure µp; that is,

µp =
∑
i∈M

piµp ◦ f−1
i . (16)

Moreover,

Mk
p(α) =

∑
i∈Mk

piα ◦ f−1
i

w−→
k→∞

µp (17)

for any α ∈ P(Rn), where, for i ∈ Mk, pi := pi1 · · · pik . Here Mk
p is the k-th iterate of Mp (see [2]

and [24] for further details). Set

MS(E) :=

{
µp :

m−1∑
i=0

pi = 1, pi > 0, i = 0, ...,m− 1

}
. (18)

For ps := (rs0, ..., r
s
m−1), where s is the similarity dimension of E (recall that ri is the contraction

constant of the similarity fi, i ∈ M), the measure µps is called the natural probability measure on E.

Furthermore, if α ∈ Ms⌊E (see (2) for notation), then

µ := µps
=

α

α(E)
(19)

(see [25]).

Notice that, whereas the measures in Ms (see (3) for notation) convey an strong geometrical

meaning, the measures µp in MS(E) do not. They are concentrated in dense subsets of E, Ep,

whose dimension is given by dim(Ep) = sp :=
∑m−1

i=0 pi log pi∑m−1
i=0 pi log ri

, but the measure µp is singular w.r.t. the
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measures Hsp and P sp , except for p = ps, in which case all these measures are mutually multiple

(see [26] and [27]).

2.2 Metric measures

We now briefly recall metric measures. They are the classical tools for analysing the geometric prop-

erties of subsets of Rn.

The Hausdorff centred measure, Cs(A), of a subset A ⊂ Rn, was defined by Saint Raymond and

Tricot [28] in a two-step process. First, the premeasure Cs
0(A) is defined for any s > 0 by

Cs
0(A) = lim

δ→0
inf

{ ∞∑
i=1

(2di)
s : 2di ≤ δ, i = 1, 2, . . .

}
, (20)

where the infimum is taken over all coverings, {B(xi, di)}i∈N+ , of A by closed balls B(xi, di) centred

at points xi ∈ A. Then, the centred Hausdorff s-dimensional measure is defined by

Cs(A) = sup {Cs
0(F ) : F ⊂ A, F closed} .

The second step in the definition of Cs(A) is due to the lack of monotonicity of Cs
0 (see [29]

and [30, Example 4]). However, in [30], it was shown that the second step can be omitted when

restricting oneself to self-similar sets with OSC.

With regard to metric measures based on packings, the standard packing measure P s (see [28]

and [31]) is also defined in a two-step process,

P s
0 (A) = lim

δ→0
sup

{ ∞∑
i=1

(2di)
s : 2di ≤ δ, i = 1, 2, . . .

}
,

where the supremum is taken over all packings {B(xi, di)}i∈N+ , with xi ∈ A for all i, and B(xi, di) ∩

B(xj , dj) = ∅ for i ̸= j. Then,

P s(A) = inf

{ ∞∑
i=1

P s
0 (Fi)

}
,

where the infimum is taken over all coverings {Fi}i∈N+ of A by closed sets Fi (cf. [32]). In [33], it was

proved that if A is a compact set with P s
0 (A) < ∞, then P s(A) = P s

0 (A), so this simplification applies

to any compact subset of a self-similar set with OSC.

The spherical s-dimensional Hausdorff measure, Hs
Sph(A), is obtained by removing in (20) the

requirement that the balls are centred at points of A. The classical s-dimensional Hausdorff measure,
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Hs(A), results if coverings of A by arbitrary subsets, {Ui}i∈ N+ , are considered and 2di is replaced

in (20) with the diameter of Ui, |Ui| (see [34] and [7]). No second step is required for these last two

measures.

The packing and the centred Hausdorff measures have a much simpler expression when dealing

with self-similar sets E that satisfy the OSC as the browse for optimal packings or coverings can be

reduced to the search for optimal density balls within the class of typical balls, B (see Definition 3).

In particular, for any self-similar E that satisfies the OSC and with similarity dimension s, it is known

(see [35]) that

P s(E) =
(
inf
{
θsµ(x, d) : B(x, d) ∈ B

})−1
, (21)

and, Lemma (13) of Sec. 3.2 implies that

Cs(E) =
(
sup

{
θsµ(x, d) : B(x, d) ∈ B

})−1
. (22)

3 Local structure and typical balls

Now we shall study the local structure of a self-similar set E that satisfies the OSC for a feasible

open set O through the study of the scenery flow of α ∈ MS(E) at a.e. x ∈ E, and through the

characterisation of the spectrum of the spherical s-densities of measures in Ms⌊E (Sec. 3.2), a limiting

set that helps to summarise the structure in the neighbourhood of a point (Sec. 1.3).

3.1 Scenery flow and tangent measures

We start by giving details on the construction of T̃ an(ν, x) for ν ∈ MS(E) and x ∈ E (see (18) for

notation).

3.1.1 Tangent measures, identifications and topologies.

Recall that the construction of the sets T̃ an(ν, x) and T̃ an
st
(ν, x) employs the identification, in the

set M(Rn), of those measures that are equal up to isometries or mutual multiples (see (4), (5), (6)

and (7) for notation). We now examine the construction of the spaces of equivalence classes of tangent

measures above in more detail.

12



For ν ∈ M(Rn) and x ∈ spt(ν), we first consider sequences {cnνx,tn}∞n=0, where for every n ∈ N,

cn > 0,

νx,tn :=
1

ν(B(x, dt−1
n ))

(gx,tn)♯ ν⌊B(x,dt−1
n ), (23)

d ≤ 1 and gx,tn is some similarity with expanding ratio tn that maps the ball B(x, t−1
n ) onto the

ball B(zn, 1), with zn = gx,tn(x), so each νx,tn is a probability measure supported on B(zn, d). Then,

T̃ an(ν, x) and T̃ an
st
(ν, x) consist of the equivalence classes of non-null weak and strong limits, re-

spectively, as tn → ∞, of such sequences {cnνx,tn}∞n=0 (see (7)). Lemma 8 shows that the elements

in T̃ an(ν, x) and T̃ an
st
(ν, x) do not depend on either the sequence of constants cn or the particu-

lar elements chosen in the equivalence classes ν̃x,tn as long as the convergence of these elements is

guaranteed.

Remark 7 The unit ball D does not play any essential role in our definition of tangent measures in

the quotient space M̃(Rn). In the opposite direction (second approach) we may, in a more akin way

to the classical approach, require the similarities gx,tn to map B(x, t−1
n ) onto B(0, 1), and then define

TanD(ν, x) and Tanst
D(ν, x) as weak and strong limits in M(D), respectively, of sequences of such

measures νx,tn , and T̃ an(ν, x), T̃ an
st
(ν, x) as the sets of equivalence classes of measures in TanD(ν, x)

and Tanst
D(ν, x), respectively.

This second method gives spaces of tangent equivalence classes which are particular cases of these in

our primary approach. Are these equivalent methods? In order to answer this question, let a sequence

{cnνx,tn}∞n=0, as in (23), converge to a non-null Radon measure α. By Lemma 8 we may assume

cn = 1 for all n ∈ N+. Since the measures νx,tn are supported on balls B(zn, d) with d ≤ 1 (see

Theorem 12 (i)), the limiting measure α must also be supported on a ball B(z, d) with zn −→
n→∞

z. Each

measure ν′x,tn = (τzn)♯ νx,tn , where τzn(y) = y − zn, is equivalent by translation to νx,tn , and ν′x,tn is

supported on D. It is easy to see that νx,tn
w−−−−→

n→∞
α implies that ν′x,tn

w−−−−→
n→∞

α′ = (τz)♯ α, so α′ is

equivalent to α and supported on D. Thus, the second method gives the same space T̃ an(ν, x) than our

primary method. But νx,tn
st−−−−→

n→∞
α does not imply that ν′x,tn

st−−−−→
n→∞

α′, so the second method does not

produce the same space T̃ an
st
(ν, x) than our method.

Observe that, if we let ν′x,tn = (τz)♯ νx,tn , then νx,tn
st−−−−→

n→∞
α does imply ν′x,tn

st−−−−→
n→∞

α′ = (τz)♯ α. But

now the measure ν′x,tn is supported on the ball B(zn−z, d) rather than on D. This observation is useful

13



because D and all the balls B(zn − z, d) are contained in some ball B(0, R) for R large enough (notice

that zn is a convergent sequence of points), so the convergence νx,tn −→
n→∞

α (weak or strong) occurs

in M(B(0, R)), and we can see that, if we consider vague convergence of measures, we do not obtain

anything new, since in the Polish space B(0, R) both convergences are equivalent ( [15], Appendix).

Lemma 8

(i) The sequences {cn}∞n=0 in the construction of T̃ an(ν, x) and T̃ an
st
(ν, x) can be taken to be cn = 1,

n = 0, 1, 2, ...

(ii) Let ν ∈ M(Rn), x ∈ spt(ν) and α ∈ Tan(ν, x). Let {tn}∞n=0 ↑ ∞ be such that {νx,tn}∞n=0

w−−−−→
n→∞

α. Assume also that there is a sequence {fn}∞n=0 in the set of isometries In such that

{(fn)♯ νx,tn}∞n=0
w−−−−→

n→∞
α′. Then, there is f ∈ In such that (f)♯α = α′. The same is true if the

convergence holds in the topology of the strong convergence in M(Rn).

Proof.

(i) By definition, a weak limiting measure α as in (7) is a non-null measure in M(Rn). Therefore, the

sequence of constants {cn} must be bounded above and below by two positive and finite constants. We

can choose a subsequence {cnk
}∞k=0 that converges to a constant c, and then the whole sequence cνx,tn

must converge to the weak limit α. This gives νx,tn
w−−−−→

n→∞
c−1α, which belongs to the same equivalence

class in T̃ an(ν, x) as α. On the other hand, the non-null weak limits in M(Rn) of sequences {νx,tn}∞n=0

are particular cases of those of sequences {cnνx,tn} . This completes the proof of part (i) for weak

limits. The argument also holds true for strong limits.

(ii) For any n ∈ N+, we can write fn(·) = gn(·) + an, where gn is an orthogonal map and an ∈ Rn.

Recall that νx,tn is supported on B(zn, d), so (gn + an)♯ (νx,tn) is supported on an + B(gn(zn), d)

( [7], Theorem 1.18), with zn −→
n→∞

z. As ∥gn(zn)∥ = ∥zn∥, this means that, if ν′x,tn := (fn)♯ νx,tn

converges, in the weak topology of M(Rn), to some non-null measure α′ in M(Rn), the sequence an

must be bounded, and then the sequence {fn}∞n=0 is also bounded in the supremum norm. Therefore,

there is a convergent subsequence, {fnk
}∞k=0, of {fn}∞n=0. Let f := limk→∞ fnk

. Since the sequence

{(fnk
)♯ (νx,tnk

)}∞k=0 converges to α′, we have that

α′ = lim
k→∞

fnk♯(νx,tnk
) = f♯α, (24)
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which proves that α′ ∼= α. The second equality in (24) holds true because, for any φ in the space

C0(Rn) of continuous, compactly supported functions on Rn and for any ε > 0, there is k0 > 0 such

that for k ≥ k0, we have

∥φ ◦ fnk
− φ ◦ f∥ ≤ ε

2
,∥∥∥∥∫ φ ◦ f d(νx,tnk

)−
∫

φ ◦ f dα

∥∥∥∥ ≤ ε

2
,

and then ∥∥∥∥∫ φ d
(
fnk ♯(νx,tnk

)
)
−
∫

φ d(f♯α)

∥∥∥∥
≤
∫

∥φ ◦ fnk
− φ ◦ f ∥ d(νx,tnk

) +

∥∥∥∥∫ φ ◦ f d(νx,tnk
)−

∫
φ ◦ f dα

∥∥∥∥ ≤ ε.

If {ν′x,tn}
∞
n=0 converges to α′ in the strong topology of M(D), then it also converges in the weak

topology and the argument above applies.

3.1.2 Scaling properties of typical balls and scenery flow

We need some preliminary lemma and the following definition.

Definition 9 Given a measure α ∈ Ms⌊E , two Euclidean balls B(x, d) and B(x′, d′) are said to be

α-density equivalent if θsα(x, d) = θsα(x
′, d′).

We start with two elementary scaling properties of typical balls for measures in MS(E) and in

Ms⌊E .

Lemma 10 Let E be a self-similar set generated by the system Ψ = {fi}i∈M of similarities of Rn,

with M = {0, 1, . . . ,m− 1} , and similarity dimension s. Let O be a feasible open set (for Ψ) and let

i ∈ M∗. Then

(i)

µp(fi(A)) = piµp(A), for µp ∈ MS(E) and µp-measurable A ⊂ O, (25)

(ii)

µp(f
−1
i (C)) = p−1

i µp(C) for µp ∈ MS(E) and µp-measurable C ⊂ Oi, (26)

(iii)

B(fi(x), rid) is α-density equivalent to B(x, d) for α ∈ Ms⌊E and B(x, d) ⊂ O, (27)
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(iv)

f−1
i (B(x, d)) is α-density equivalent to B(x, d) for α ∈ Ms⌊E and B(x, d) ⊂ Oi. (28)

Proof. The proof of (25) is trivial from (16) if E satisfies SSC. If SSC does not hold, then

µp(f
−1
j (fi(A))) ≤ µp(∂O) = 0 for j ̸= i,

because A ⊂ O and, hence, f−1
j (fi(A)) ∩ E ⊂ ∂O, which is known to be a µp- null set (cf. [27]), so

(25) also follows from (16). If we set A = f−1
i (C) in (25), we obtain (26) (see also [11]). By (19), we

can apply (25) and (26) to any measure α ∈ Ms⌊E , which easily gives (27) and (28).

Before stating the main theorem of this section, we will see the following lemma.

Lemma 11

(i) Let g, f : Rn → Rn, α ∈ M(Rn), λ > 0 and A ⊂ Rn be an α-measurable subset. Then, the

following equalities hold true:

• λ (g)♯ (α) = (g)♯ (λα),

• (f ◦ g)♯α = f♯(g)♯(α), and

• (g♯α) ⌊A= g♯(α⌊g−1(A))

(ii) Let α be a measure on M(Rn), g : Rn → Rn a bijective mapping and β := g♯ (α) . Then, α =

(g−1)♯β.

(iii) If {αk}k∈N is a sequence of measures on M(Rn) and (g)♯ (αk)
st−−−−→

k→∞
β, then αk

st−−−−→
k→∞

(
g−1

)
♯
(β) .

(iv) Let B(xn, d) := Bn be a sequence of closed balls that converges in the Hausdorff metric to a closed

ball B(x, d) := B, and let α ∈ M(B) with α(∂B) = 0. Then α⌊Bn := αn
st−−−−→

n→∞
α.

Proof.

Parts (i)-(iii) easily follows from the definitions.

Recall that αn
st−−−−→

n→∞
α means that αn(A) −→

n→∞
α(A) for any Borel set A ⊂ Rn. Let α ∈ M(B) and let

K be any compact set contained in the interior U ofB. The distance d(K, ∂B) = min {∥x− y∥ : x ∈ K, y ∈ ∂B}

must be a quantity ε > 0 and then K ⊂ B(x, d− ε). The convergence of Bn to B implies that there is

an n0 ∈ N+ such that, for n > n0, ∥x− xn∥ ≤ ε. Then, if z ∈ K,

∥z − xn∥ ≤ ∥z − x∥+ ∥x− xn∥ ≤ d,
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which shows that K ⊂ B ∩Bn for n > n0. Then, for such values of n, we have

αn (K) = α(Bn ∩K) = α(K)

We now prove that αn
st−−−−→

n→∞
α also holds in the σ-field B(B) of Borel subsets of B. Let

A :=
{
A ⊂ B : A is α-measurable and lim

n→∞
αn(A) = α(A)

}
.

(Notice that any α-measurable set is also αn-measurable for all n ∈ N+). It is easy to check that

B ∈ A, that B−A := Ac ∈ A if A ∈ A, and that A is closed under a finite union of its members or, in

short, that A is a field. Let Fk be a sequence of members of A. In order to show that ∪k∈N+Fk ∈ A, we

first write ∪k∈N+Fk = ∪k∈N+Gk, where Gk = ∪k
i=1Fi. This shows that ∪k∈N+Fk can be expressed as a

countable union of the increasing sequence Gk of members of A. Furthermore, ∪k∈N+Fk = ∪k∈N+Hk,

where Hk = (Gk −Gk−1) with G0 = ∅. Now, each Hk ∈ A and Hk ∩Hk′ = ∅ for k ̸= k′. Then, using

that each αn is a measure, we have

lim
n→∞

αn

( ⋃
k∈N+

Hk

)
=
∑
k∈N+

lim
n→∞

αn (Hk) =
∑
k∈N+

α (Hk) = α

( ⋃
k∈N+

Hk

)
.

This completes the proof that A is a σ-field. Notice that any closed set K ⊂ B can be written as the

union of the α and αn-null set K ∩ ∂B and of the set K − ∂B, which belongs to A as a countable

union of compact sets K ∩B(x, d− n−1) ⊂ U. Thus, the class K of closed subsets of B is contained in

A. We know that the σ-fields generated by K and by A satisfy B(B) = σ(K) ⊂ σ(A) = A. This gives

the strong convergence of αn to α on B(B).

We can now go to the scenery flow of measures in MS(E).

Theorem 12 Let E be a self-similar set generated by the system Ψ = {fi}i∈M of similarities on

Rn, with M = {0, 1, . . . ,m− 1} and similarity dimension s. Let O be a feasible open set (for Ψ) and

µp ∈ MS(E). Then, for any µp-measurable set B ⊂ O and i ∈ M∗, the following statements hold

true.

(i)

µp⌊Bi= pi (fi)♯ (µp⌊B) .

(ii)

µp⌊B= p−1
i

(
f−1
i

)
♯
(µp⌊Bi

) . (29)
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(iii) There is a subset Ê ⊂ E with µp(Ê) = 1 such that, if x ∈ E and B(x, d) ⊂ O, then for any y ∈ Ê,

there is a sequence {ij}j∈N+ with ij ∈ M∗ and a sequence of balls
{
B(y, drij )

}
j∈N+ such that

p−1
ij

(
f−1
ij

)
♯

(
µp⌊B(y,drij )

)
st−−−→

j→∞
µp⌊B(x,d)

(iv) For any x ∈ Ê,

M̃S(B) ⊂T̃ an
st
(µp, x),

where MS(B) is defined in (8).

Proof. In order to show (i), let µp ∈ MS(E), i ∈ M∗ and let B ⊂ O and A ⊂ Rn be µp-measurable

sets. Then,

(pi(fi)♯ (µp⌊B)) (A) = pi (µp⌊B)
(
f−1
i (A

)
)

= piµp(f
−1
i (A ∩Bi)) = µp⌊Bi

(A),

where the third equality follows from (26) and (i) is proved. Analogously, (ii) follows from (25).

Now, let

Ê =
{
y ∈ E :

{
T k(y) : k ∈ N+

}
is dense in E

}
(30)

(see (15) in Sec. 2 the definition of T ). It is well known (cf. [36]) that the set Ê has a full µp-measure.

Let x ∈ E, B(x, d) ⊂ O, y ∈ Ê and {xj}j∈N+ such that limj→∞ xj = x (in the Euclidean metric) with

xj ∈ T kj (y) for every j ∈ N+. We may also assume that B(xj , d) ⊂ O for every j ∈ N+. We shorten

B(xj , d) to Bj and B(x, d) to B. Since limj→∞ xj = x, it follows that
{
Bj
}
j∈N converges to B in the

Hausdorff metric. Also, µp(∂B) = 0 because µp ∈ MS(E) (cf. [37]). Then, Lemma 11 (iv) implies

that

µp⌊Bj
st−−−→

j→∞
µp⌊B . (31)

Now, notice that, since xj ∈ T kj (y) for each j ∈ N, there is ij ∈ Mkj such that fij (xj) = y (see

Remark 6). Then, f−1
ij

(B(y, drij )) = Bj . By (29) applied to Bj and ij ∈ M∗, we see that

µp⌊Bj= p−1
ij

(
f−1
ij

)
♯

(
µp⌊B(y,drij )

)
, (32)

which concludes the proof of (iii).

Observe that, in the terminology of Sec. 3.1.1, the right hand term in (32) is, ctjνy,tj for ν = µp,
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tj = r−1
ij

and ctj = p−1
ij

µp(B(y, drij )) (recall that νy,tj was a normalised blowup and notice also that

we may assume, rescaling E if necessary, that all typical balls have a radius d ≤ 1). So, (31) and (7)

give µ̃p⌊B ∈ T̃ an
st
(µp, x) and part (iv) is proved.

3.2 Asymptotic spectra and measure-exact self-similar sets

We shall write Im(θsα,B) to designate the set

Im(θsα,B) := {θsα(x, d) : B(x, d) ∈ B}

(see notation in Definition 3), which plays a relevant role in the geometric analysis of E (see (21) and

the lemma below).

Lemma 13 Let E be a self-similar set generated by the system of similarities of Rn, Ψ = {fi}i∈M ,

with M = {0, 1, . . . ,m− 1} , and similarity dimension s. If E satisfies the OSC, then

(i)

Cs(E) =
(
sup

{
θsµ(x, d) : B(x, d) ∈ BO

})−1
,

where BO := {B(x, d) ∈ B : B(x, d) ⊂ O} and O is any feasible open set for Ψ.

(ii)

Cs(E) =
(
sup Im(θsµ,B)

)−1
.

Proof. It is known that for a general self-similar set that satisfies the OSC (see [35] and [30]),

Cs(E) =
(
sup{θsµ(x, d) : x ∈ E and d > 0}

)−1
(33)

holds. Let O be any feasible open set. Then, it is enough to show that

sup
(x,d)∈E×R+

θsµ(x, d) ≤ sup
B(x,d)∈BO

θsµ(x, d).

Should this not be the case, there would exist (x0, d0) ∈ E × R+ such that B(x0, d0) /∈ BO and

θsµ(x0, d0) > sup
B(x,d)∈BO

θsµ(x, d).

In order to show that this contradicts (33), take x∗ ∈ E∩O such that there is i ∈ M∗ with fi(x
∗) = x∗.

Let ρ1 := min {∥x∗ − z∥ : z ∈ ∂O} . Observe that, if we take ρ2 > 0 so that B(x0, d0) ⊂ B(x∗, ρ2) and
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k ∈ N+, satisfying that rki ρ2 < ρ1, then

fk
i (B(x0, d0)) ⊂ fk

i (B(x∗, ρ2)) = B(x∗, rki ρ2) ⊂ O,

which, using that fk
i (B(x0, d0) ∩ S) ⊂ fk

i (B(x0, d0)) ∩ S, raises the contradiction

θsµ(x0, d0) ≤
r−ks
i µ(fk

i (B(x0, d0)))

(2d0)s
=

µ(B(fk
i (x0), r

k
i d0))

(2d0rki )
s

≤ sup
B(x,d)∈BO

θsµ(x, d).

Part (ii) is trivial from (i).

In the next theorem, we shall establish the relationships between the pointwise and global spectra,

the set Im(θsα,B) and its extreme values α(E) (P s(E))
−1

and α(E) (Cs(E))
−1

.

Theorem 14 Let E ⊂ Rn be a self-similar set that satisfies the SOSC with feasible open set O and

similarity dimension s, and let α ∈ Ms⌊E . Then, the following statements hold true.

(i) For x ∈ E, it holds that

Spec(α, x) =
[
θsα(x), θ

s

α(x)
]

(see (13) and (12) for notation)

Spec(α,E) ⊂ [κ1, κ2]

with 0 < κ1 ≤ κ2 < ∞.

(ii) There is a subset Ê ⊂ E with µ(Ê) = 1 such that, for any y ∈ Ê,

Spec(α, y) = Spec(α, Ê) = Spec(α,O ∩ E).

(iii) (
α(E)

P s(E)
,
α(E)

Cs(E)

)
⊂ Im(θsα,B) ⊂ Spec(α,O∩E) ⊂

[
α(E)

P s(E)
,
α(E)

Cs(E)

]
.

Proof. That θsα(x) and θ
s

α(x) belong to and are the extreme values of Spec(α, x) follows from the

definitions. That all the intermediate values in between also belong to Spec(α, x) is a consequence

of the continuousness of θsα(x, d), with respect to d. This last property follows from the fact that the

α-measure of the boundary of Euclidean balls is always null [37] for any measure α ∈ MS(E), which

proves the first assertion of (i). The second assertion is well known [2].

In order to prove (ii), let Ê be the full µ-measure subset of points of E that have a dense geometric

shift orbit in E (see (30)) and let y ∈ Ê. The inclusions Spec(α, y) ⊂ Spec(α, Ê) ⊂ Spec(α,O∩E) are
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trivial as Ê ⊂ O. This follows from the fact that, if y /∈ O, then T (y) ∩O = ∅ because fi(O) ⊂ O for

any i ∈ M, and repeating the same argument, we see that T k(y) could not be dense in E.

The corresponding equalities would follow if we prove Spec(α,O ∩ E) ⊂ Spec(α, y). This holds true

because, if z = limk→∞ θsα(x, dk) for x ∈ O∩E and dk −→
k→∞

0, since B(x, dk) ∈ B for any sufficiently

large k, we can apply Theorem 12 (iii) to see that, for such values of k, θsα(x, dk) ∈ Spec(α, y) and,

hence, limk→∞ θsα(x, dk) ∈ Spec(α, y) easily follows from (i). This ends the proof of (ii).

Finally, the first inclusion in (iii) for α = µ follows from the continuousness of the function θsµ(x, d) on

Rn × R+ since

1

P s(E)
≤ θsµ(x, d) ≤

1

Cs(E)

holds if B(x, d) ∈ B as a straightforward consequence of (21) and (22). The arguments given in the

proof of (ii) applied to µ show that, if B(x, d) ∈ B, then θsµ(x, d) ∈ Spec(µ,O ∩ E), which gives the

next inclusion in (iii). The last inclusion follows from the observation that Spec(µ,O∩E) consists of

limiting values of sequences with terms in Im(θsµ,B), whose extreme values are 1
P s(E) and

1
Cs(E) . Using

(19), we get that θsα(x, d) = α(E)θsµ(x, d), and (iii) follows for any α ∈ Ms⌊E .

Of note is the case in which the extreme values of θsα(x, d) are attained on B. In this case, we have

the following result.

Corollary 15 Let α ∈ {µ, P s⌊E , Cs⌊E}. Under the hypotheses of Theorem 14, if there are two balls

B(x1, d1) and B(x2, d2), both in B, such that

θsµ(x1, d1) = inf
{
θsµ(x, d) : B(x, d) ∈ B

}
(34)

and

θsµ(x2, d2) = sup
{
θsµ(x, d) : B(x, d) ∈ B

}
, (35)

the inclusions in Theorem 14 (iii) can be replaced with equalities.

Proof. The first inclusion in Theorem 14 (iii), together with (21), (22), (34) and (35), implies that

Im(θsµ,B) =
[

1

P s(E)
,

1

Cs(E)

]
,

which, in turn, gives that Im(θsα,B) = Spec(α,O∩E).

Corollary 15 motivates the introduction of the class of α-exact self-similar sets with special prop-

erties.
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Definition 16 We say that the self-similar set E is α-exact if there exists B ∈ Cα such that

µ(B)

|B|s
= sup

{
µ(B)

|B|s
: B ∈ Cα

}

if α ∈ {Cs⌊E ,Hs⌊E ,HSph⌊E} , and

µ(B)

|B|s
= inf

{
µ(B)

|B|s
: B ∈ Cα

}
,

if α = P s⌊E , where Cα is what we call “the relevant class of sets” for the measure α, which is defined

as

• Cα := B if α ∈ {P s⌊E , Cs⌊E} ,

• CHs⌊E := {B ⊂ Rn : B is a convex set} and

• CHs
Sph⌊E := {B ⊂ Rn : B is a closed ball}.

One nice property that α-exact self-similar sets have is that they possess optimal coverings or

packings, that is, almost-coverings (i.e. coverings for α-almost all points in E) or packings whose

s-volume gives the exact value of the corresponding α-measure, whilst if α-exactness is not fulfilled,

we can only hope to find coverings or packings with s-volume arbitrarily close to the corresponding

α-measure.

Example 17 Self-similar sets E with the strong separation condition are an example of α-exact self-

similar sets. See [38] for α ∈
{
P s⌊E , Hs⌊E , Hs

Sph⌊E
}

and [30] for α = Cs.

Example 18 The Sierpinski gasket S is an example of a set where the strong separation condition

does not hold, and that is a P s⌊S-exact (see [22]) and Cs⌊S-exact (see [23]) set.

In [39], it is shown a class of self-similar sets E with OSC in the line whose members can be non-

Hs⌊E-exact (and, consequently, non-Hs
Sph⌊E-exact since these two measures coincide in the line), and

the authors find conditions under which they are Hs⌊E-exact.

Example 19 Self-similar sets E with OSC in the line, with similarity dimension s, and that admit

an open interval as a feasible open set, are an example of P s⌊E-exact self-similar sets [40].
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3.3 Complexity of the local structure of self-similar sets

We now show how these results allow us to explore the complexity of the local geometric structure of

self-similar sets that satisfy the OSC condition.

First, we need to properly define the equivalence classes of restricted balls. Notice that different

Euclidean balls, even if they share the centre, can produce the same restricted balls. This motivates

the following definitions that are valid for general subsets of Rn.

Definition 20 Given a subset A ⊂ Rn, the spherical diameter of A is defined by

|A|Sph = inf {2d : A = A ∩B(x, d) for some x ∈ A}

Definition 21 Given a subset A ⊂ Rn, we say that the restricted ball B(x, d)∩A is proper and write

B(x, d) ∩A ∈ P(A) if x ∈ A and 2d = |B(x, d) ∩A|Sph .

Definition 22 Given a measure α on Rn and an α-measurable s-set A ⊂ Rn, we define the α-spherical

s-density of A by

θsSph(α)(A) =
α(A)(

|A|Sph

)s .
Definition 23 Given a subset A ⊂ Rn and two restricted balls B(x, d)∩A, B(x′, d′)∩A both in P(A),

we say that they are similarity-equivalent and write B(x, d)∩A ≃Sn
B(x′, d′)∩A if there is an f ∈ Sn

such that

B(x′, d′) ∩A = f(B(x, d) ∩A).

Lemma 24 Let A ⊂ Rn and B(x, d) ∩A ∈ P(A).

(i) If f ∈ Sn has similarity constant rf , then f(B(x, d))∩ f(A) ∈ P(f(A)) and |f(B(x, d)) ∩ f(A)|p =

rfd.

(ii) Let α ∈ Ms and let A be an α-measurable s-set. If B(x, d) ∩A ≃Sn
B(x′, d′) ∩A, then

θsSph(α)(B(x, d) ∩A) = θsSph(α)(B(x′, d′) ∩A)

Proof. Let A ⊂ Rn, B(x, d) ∩ A ∈ P(A). In order to show (i), assume that f(B(x, d)) ∩ f(A) is not

proper. Then, there is a ball B(y, ρ) such that

B(y, ρ) ∩ f(A) = f(B(x, d)) ∩ f(A)
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with y ∈ f(A) and ρ < rfd. Then B(f−1(y), r−1
f ρ) ∩ A = B(x, d) ∩ A with f−1(y) ∈ A and

r−1
f ρ < d, in contradiction with |B(x, d) ∩A|Sph = 2d. Therefore, f(B(x, d)) ∩ f(A) ∈ P(f(A))

and |f(B(x, d)) ∩ f(A)|Sph = 2rfd.

Part (ii) is now trivial since α ∈ Ms and, hence,

α(B(x′, d′) ∩A) = α(f(B(x, d) ∩A)) = rsfα(B(x, d) ∩A)

and, by (i),

(
|B(x′, d′) ∩A|Sph

)s
=
(
|f(B(x, d) ∩ f(A))|Sph

)s
= rsf (2d)

s = rsf

(
|B(x, d) ∩A|Sph

)s
.

Now we can proceed to state our result for the complexity of the local geometry of self-similar sets

with OSC.

Corollary 25 Under the assumptions of Theorem 14, assume either that s is a non-integer real num-

ber, or that s is integer and the self-similar set E satisfies the strong separation condition. Then, there

is an uncountable number of equivalence classes in the quotient space SphE/ ≃Sn
.

Proof. By Lemma 24 (ii), we know that all restricted balls in an equivalence class of SphE/ ≃Sn

share the same µ-spherical s-density, which allows us to naturally define a mapping θsµ : SphE/ ≃Sn→

Im(θsµ,B). This implies that the inverse
(
θsµ
)−1

: Im(θsµ,B)→SphE/ ≃Sn
of such mapping is an injective

correspondence.

In the case of non-integer dimension, using Marstrand’s Theorem, parts (ii) and (iii) of Theorem 14

and that µ(Ê) = 1 > 0, it follows that Cs(E) < P s(E) (notice that from the definitions in Sec. 2.2

it is easy to see that Cs(E) ≤ P s(E)). This, together with Theorem 14 (iii), means that Im(θsµ,B)

contains an interval with uncountably many points and the proof is completed.

In the case in which E satisfies the strong separation condition, we use a result by Hutchinson [2],

which shows that if an special separation condition holds, condition that easily follows from the strong

separation condition (see Example 3(a) p. 743 in [2]), then E is an unrectifiable self-similar set and,

by the rectifiability Preiss’s Theorem [3], the Hs-density cannot exist in sets of positive Hs-measure

and the argument given above for the non-integer case also applies here.
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4 The spectrum of the Sierpinski gasket

In this section, we shall apply the results obtained in Theorem 14 to fully characterise the asymptotic

spectra of the Sierpinski gasket S.

Recall that the Sierpinski gasket or Sierpinski triangle is a special case of a self-similar set generated

by a system Ψ = {f0,f1,f2} of three contracting similitudes of the plane, with contraction ratios

ri := 1/2, i ∈ M, given by

f0(x, y) =
1

2
(x, y), f1(x, y) =

1

2
(x, y) + (

1

2
, 0) and f2(x, y) =

1

2
(x, y) +

1

2
(
1

2
,

√
3

2
). (36)

We shall denote by zi the fixed point of each fi, i = 0, 1, 2 that is, z0 = (0, 0), z1 = (1, 0) and

z2 = ( 12 ,
√
3
2 ), and by T the equilateral triangle with vertexes zi, i ∈ M.

It is well known that S is a connected set that satisfies the OSC and has similarity dimension

s = log 3
log 2 .

Thanks to previous work on the packing and Hausdorff centred measures of the Sierpinski gasket (cf.

[22] and [23]), we know that S is both P s⌊S and Cs⌊S-exact, and we have fairly precise approximations

of the values of P s(S) and Cs(S).

4.1 Theoretical results

Theorem 26 Let S be the Sierpinski gasket, Ŝ =
{
y ∈ S :

{
T k(y) : k ∈ N

}
is dense in S

}
, B be the

collection of typical balls, R be a feasible open set for S, and α ∈ Ms⌊S . Then, the following statements

hold true.

(i)

Spec(α, y) = Spec(α, Ŝ) = Spec(α,R∩ S) = Im(θsα,B) =
[
α(S)

P s(S)
,
α(S)

Cs(S)

]
, y ∈ Ŝ. (37)

(ii) Spec(α, S) is given by the union of two closed intervals of positive length:

Spec(α, S) =
[
θsα(z0), θ

s

α(z0)
]
∪
[
α(S)

P s(S)
,
α(S)

Cs(S)

]
, (38)

where z0 = (0, 0). Furthermore,

θsα(z0) = min

{
θsα(z0, d) :

1

2
≤ d ≤ 1

}
(39)
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and

θ
s

α(z0) = max

{
θsα(z0, d) :

1

2
≤ d ≤ 1

}
. (40)

Proof. Our previous work guarantees that S is a P s-exact (see [22]) and Cs-exact (see [23]) set. Then,

the four equalities in (i) follow as a consequence of Theorem 14 and Corollary 15.

In order to prove (38), let Ri, i ∈ {0, 1, 2} be the three open rhombi composed of the topological

interior of the union of the triangle T and its reflection across the edge of T opposite the point zi,

i ∈ M (see R2 in Fig. 1). Using that

S = {z0, z1, z2} ∪ (S ∩ ∪2
i=0Ri), (41)

we obtain

Spec(α, S) = Spec(α, S ∩ ∪2
i=0Ri) ∪

(
∪2
i=0 Spec(α, zi)

)
=

=

[
α(S)

P s(S)
,
α(S)

Cs(S)

]
∪ Spec(α, z0),

where the last equality follows from (37), (41) and the fact that, by symmetry, Spec(α, zi) must be

identical for i ∈ {0, 1, 2} .

Observe now that, if d ≤ 1/2, then B(z0, d) ∩ S = B(z0, d) ∩ f0(S). Hence, using that α is an s-

dimensional metric measure

θsα(z0, d) =
α(B(z0, d) ∩ f0(S))

(2d)s
=

α(f0(B(z0, 2d) ∩ S))

(2d)s

=
α(B(z0, 2d) ∩ S))

(4d)s
= θsα(z0, 2d).

If 2d ≤ 1/2, we can repeat the argument k times until 1/2 ≤ 2kd ≤ 1 and θsα(z0, d) = θsα(z0, 2
kd). This

shows that

min {θsα(z0, d) : 0 ≤ d ≤ 1} = min

{
θsα(z0, d) :

1

2
≤ d ≤ 1

}
= θsα(z0),

where the last equality can easily be checked and, analogously, (40) holds.

Remark 27 Notice that part (i) of Theorem 26 shows that there is a set of full α-measure whose

points exhibit a strongly regular behaviour, whereas part (ii) underlines the special local behaviour of the

vertexes as the most isolated points in S. However, the set of exceptional points does not consist only of

the vertexes as there might be other exceptional points, all of them belonging to the set ∪2
i=0 (Ri ∩ S)−Ŝ.
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The pointwise α-density spectrum of such points is contained in
[

α(S)
P s(S) ,

α(S)
Cs(S)

]
. The detection and

characterisation of the behaviour of these points remains an open issue.

4.2 Numerical results

Following the structure of the algorithms developed in [22, 23, 41, 42] for the numerical estimation of

the metric measures of self-similar sets, the construction of the computational algorithm used in this

work in order to approximate the values of θsµ(z0) and θ
s

µ(z0) relies upon the discrete approximations

of both the Sierpinski gasket and its invariant measure µ. Recall that any two measures in Ms⌊S are

mutually multiple of each other (see (19)), so we can obtain Spec(α, S) from Spec(µ, S) if we know

α(S).

The Sierpinski gasket, as the attractor of Ψ = {f0, f1, f2} (see (36)), is the unique non-empty

compact set that admits the self-similar decomposition S = F (S), where F is the Hutchinson operator

defined, for A ⊂ R2, by

F (A) := f0(A) ∪ f1(A) ∪ f2(A).

It is well-known that, for any non-empty compact subset A ⊂ R2, S can be built with an arbitrary

level of detail by increasing the iterations k in F k(A), where F k = F ◦F...◦F is the k-th iterate of the

contracting operator F. This is because F k(A)
k→∞→ S in the Hausdorff metric (cf. [2]). Furthermore,

if A ⊂ S, then F k(A) ⊂ S for any k ∈ N+. In particular, if we take A1 := {z0, z1, z2} as the initial

compact set, we obtain the set

Ak := F k−1(A1) ⊂ S, k ≥ 2, (42)

which approximates S at the iteration k of our algorithm.

The relation between the Markov operator and the natural probability measure µps
given in (17),

with s = log 3
log 2 and pi = rsi = 3−k, and (19) leads to the following relation:

Mk
ps
(α) =

1

3k

∑
i∈Mk

α ◦ f−1
i

w→ µ, α ∈ P(R2). (43)

If we consider µ1 := 1
3 (δz0 + δz1 + δz2) as an initial measure α in (43), where δx is a unit mass at

x, then

µk := Mk−1
ps

(µ1) =
1

3k−1

∑
i∈Mk−1

µ1 ◦ f−1
i =

1

3k

∑
i∈Mk−1

(
δfi(z0) + δfi(z1) + δfi(z2)

)
(44)
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is a probability measure supported on Ak ⊂ S and µk
w→ µ.

The discrete measure µk is the approximation of the invariant measure µ that our algorithm takes at

iteration k.

Lemmas 28 and 30 (Lemma 28 is proved in [23]), provide precise relationships between the measures

µk and µ.

Lemma 28

(i) Let {Si : i ∈ I ⊂ Mk}, k ∈ N+, be a collection of k-cylinder sets of S. Then,

µ

(⋃
i∈I

Si

)
≤ µk

(⋃
i∈I

Si

)

(ii) Let A ⊂ S, k ∈ N+, and let I = {i ∈ Mk : Si ∩A ̸= ∅}. Then,

µk(A) ≤ µ

(⋃
i∈I

Si

)

Remark 29 The comparisons between the measures µ and µk on collections of cylinders and sets

given in the lemma above are passed to enlarged and reduced balls in part (i) of the next lemma. Since

our algorithms compute only µk-densities of balls with centres in Ak (see (42)) and with some point of

Ak in their boundaries, in part (ii) of this lemma we approximate the µ-measure of a ball centred at x

with the µk-measure of a ball with its same centre and with a point of Ak at its boundary.

In order to obtain more accurate estimates of θsµ(z0) and θ
s

µ(z0) (as we also do in [22] and [23] for the

estimation of P s(S) and Cs(S)), it is necessary to consider open balls when searching balls of minimal

µk-density (see (46)), whereas in the search of balls with maximal µk-density, the approximating balls

must be taken to be closed balls (see (47)). In the definition of θsµ(·) and θ
s

µ(·), the use of open or

closed balls has no relevance because the µ-measure of the boundary of any ball is null. However, in the

case of densities of the discrete measures µk, the values obtained in one or the other case do actually

matter, mainly if k is not large.

From now on, we shall use the notation B̊(x, d) := {y ∈ R2 : |x− y| < d} and θ̊sα for the s-density

of α defined using open balls.
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Lemma 30 Let k > 0, x ∈ R2, and 2−k < d ≤ maxi∈M ∥zi − x∥ . Then,

(i) µk(B(x, d− 2−k)) ≤ µ(B(x, d)) ≤ µk(B̊(x, d+ 2−k))

(ii) If B(x, d) ∩Ak ̸= ∅, then there are points yk and zk in Ak such that

µk

(
B̊(x, dyk

)
)
≤ µ(B(x, d)) ≤ µk(B(x, dzk)),

where dyk
:= |yk − x| , dzk := |zk − x| , and {dyk

, dzk} ∈ [d− 2−k, d+ 2−k].

Proof.

(i) Let

Hk := {i ∈ Mk : B(x, d− 2−k) ∩ Si ̸= ∅}

For any i ∈ Hk, Si ⊂ B(x, d) holds, so ∪i∈Hk
Si ⊂ B(x, d). Using Lemma 28 (ii), we have

µk(B(x, d− 2−k)) ≤ µ(∪i∈Hk
Si) ≤ µ(B(x, d)).

Let

Gk := {i ∈ Mk : Si ⊂ B̊(x, d+ 2−k)}.

Then, B̊(x, d) ∩ S ⊂ ∪i∈Gk
Si and ∪i∈Gk

Si ⊂ B̊(x, d+ 2−k). Using Lemma 28 (i), we get

µ(B(x, d)) = µ(B̊(x, d) ∩ S) ≤ µ(∪i∈Gk
Si) ≤ µk(∪i∈Gk

Si) ≤ µk(B̊(x, d+ 2−k))

(ii) Let d∗ = maxi∈M ∥zi − x∥ . If S ⊂ B(x, d), then d = d∗ and µ(B(x, d∗)) = 1 = µk(B(x, d∗)) >

µk((B̊(x, d∗)), so property (ii) holds for dyk
= dzk = d∗. Let us now assume that S ⊈ B(x, d). We

prove first that

Fk := {i ∈ Mk : ∂B(x, d) ∩ Si ̸= ∅} ≠ ∅. (45)

If Fk = ∅, then

∪i∈MkSi ⊂ B̊(x, d) ∪ (B(x, d))c.

We know that (∪i∈MkSi) ∩ B̊(x, d) ̸= ∅ because B(x, d) ∩ Ak ̸= ∅ and Fk = ∅, and we also know

that (∪i∈MkSi) ∩ (B(x, d))c ̸= ∅ because S ⊈ B(x, d) and Fk = ∅. This contradicts that ∪i∈MkSi is

a connected set, and (45) must hold.

Using (i), we have that

µ(B(x, d)) ≤ µk(B(x, d+ 2−k)) = µk(B(x, dzk)),
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where zk satisfies dzk = ∥zk − x∥ with

dzk = max{∥y − x∥ : y ∈ Ak ∩B(x, d+ 2−k)}.

The inequality dzk ≤ d+2−k is obvious, and dzk ≥ d−2−k follows because Fk ̸= ∅ and each k-cylinder

Si, i ∈ Mk contains some point in Ak.

Using the first inequality in (i), we have

µ(B(x, d)) ≥ µk(B(x, d− 2−k)) = µk(B̊(x, dyk
)),

where yk satisfies dyk
= ∥yk − x∥ with

dyk
= min{∥y − x∥ : y ∈ Ak ∩

(
B(x, d− 2−k)

)c}.
The inequality dyk

≥ d− 2−k is obvious, and dyk
≤ d+ 2−k follows because Fk ̸= ∅.

Theorem 26 allows us to characterise Spec(α, S) for α ∈ {µ, P s⌊S , Cs⌊S} through only four

numbers, namely, θsµ(z0), θ
s

µ(z0), P
s(S) and Cs(S). Thanks to previous numerical work that uses the

measures µk and the sets Ak (see (44) and (42)) as approximations of µ and S, respectively, we have

estimates given by our algorithms Pk of P s(S) (see [22]) and Ck of Cs(S) (see [23]) and precise error

bounds for such estimates. We show in Theorem 31 below how to obtain estimates ξ
k
of θsµ(z0) and

ξk of θ
s

µ(z0), that such estimates converge to the real values, and we give accurate bounds for them,

that is θsµ(z0) ∈ [ξinf
k

, ξsup
k

] and θ
s

µ(z0) ∈ [ξ
inf

k , ξ
sup

k ] (see the definition of ξ
k
, ξk and of the intervals

[ξinf
k

, ξsup
k

] and [ξ
inf

k , ξ
sup

k ] in Theorem 31). This allows us to implement an algorithm along the lines of

those developed for the estimation of Cs(S) and P s(S) (see [22,23]).

Theorem 31 For k > 1, let

ξ
k
:= min

{
θ̊sµk

(z0, d) : d = |x− z0| , x ∈ Ak, d ∈ [
1

2
− 2−k, 1]

}
(46)

and

ξk := max

{
θsµk

(z0, d) : d = |x− z0| , x ∈ Ak, d ∈ [
1

2
− 2−k, 1]

}
(47)

be the estimates of θsµ(z0) and θ
s

µ(z0), respectively. Let dk be such that θ̊sµk
(z0, dk) = ξ

k
, and let Dk be

such that θsµk
(z0, Dk) = ξk.

Then,

{θsµ(z0), ξk} ∈ [ξinf
k

, ξsup
k

], (48)
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and

{θsµ(z0), ξk} ∈ [ξ
inf

k , ξ
sup

k ], (49)

where

ξinf
k

= Kkξk, Kk = (1− 21−k)s, ξsup
k

=
µk(B̊(z0, dk + 2−k))

(2dk)s
, (50)

ξ
inf

k =
µk(B(z0, Dk − 2−k))

(2Dk)s
, Kk = (1 + 21−k)s, ξ

sup

k = Kkξk. (51)

Proof. That ξ
k
∈ [ξinf

k
, ξsup

k
] and ξk ∈ [ξ

inf

k , ξ
sup

k ] is obvious from the definitions.

We prove first that θsµ(z0) ∈ [ξinf
k

, ξsup
k

]. Using Lemma 30 (i) and (39), we obtain

θsµ(z0) ≤
µ(B(z0, dk))

(2dk)s
≤ µk(B̊(z0, dk + 2−k))

(2dk)s
= ξsup

k
.

Let d ∈ [ 12 , 1] be such that θsµ(z0) =
µ(B(z0,d))

(2d)s . Lemma 30 (ii) guarantees the existence of yk ∈ Ak such

that µ(B(z0, d)) ≥ µk(B̊(z0, dyk
)), where dyk

:= |yk − z0| ∈ [d − 2−k, d + 2−k] ⊂ [ 12 − 2−k, 1]. This,

together with (46) and the inequality d ≥ 1
2 gives

θsµ(z0) =
µ(B(z0, d))

(2d)s
≥ µk(B̊(z0, dyk

))

(2d)s
=

(
dyk

d

)s
µk(B̊(z0, dyk

))

(2dyk
)s

≥
(
dyk

d

)s

ξ
k
≥
(
d− 2−k

d

)s

ξ
k
≥ ξinf

k
.

The proof that θ
s

µ(z0) ∈ [ξ
inf

k , ξ
sup

k ] is analogous. Using Lemma 30 (i) and (40), we obtain

θ
s

µ(z0) ≥
µ(B(z0, Dk))

(2Dk)s
≥ µk(B(z0, Dk − 2−k))

(2Dk)s
= ξ

inf

k .

Let D ∈ [ 12 , 1] be such that θ
s

µ(z0) = µ(B(z0,D))
(2D)s . Lemma 30 (ii) guarantees the existence of zk ∈ Ak

such that µ(B(z0, D)) ≤ µk(B(z0, dzk)), where dzk := |zk − z0| ∈ [D − 2−k, D + 2−k] ⊂ [ 12 − 2−k, 1].

This, together with (47) and the inequality D ≥ 1
2 gives

θ
s

µ(z0) =
µ(B(z0, D))

(2D)s
≤ µk(B(z0, dzk))

(2D)s

=

(
dzk
D

)s
µk(B(z0, dzk))

(2dzk)
s

≤
(
dzk
D

)s

ξk

≤
(
D + 2−k

D

)s

ξk ≤ ξ
sup

k .

We present in Table 1 the estimates ξ
k
, and ξk of θsµ(z0) and θ

s

µ(z0) (see (48) and (49) for

definitions), respectively, and the corresponding lower and upper bounds in the 100% confidence inter-
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vals [ξinf
k

, ξsup
k

], [ξ
inf

k , ξ
sup

k ] (see (51),(49)) obtained by our algorithm for k = 14 (see the definition these

values in (46), (47), (50) and (51)). We also provide the radii, dk and Dk, of the µk-optimal balls.

See in Fig. 2a the graph of the function θsµ14
(z0, d) as a function of d ∈ [ε, 1], and in Fig. 2b the

points (g(d), θsµ14
(z0, d)), where g(d) := ε + ε−1

log(ε) (log(d) − log(ε)) and ε = 0.05. This is a suitable

logarithmic scale, [11], which allows us to see the periodicity of this function at such a scale.

We present in Table 2 the estimates Pk of P s(S) and Ck of Cs(S) obtained by our algorithms for

k = 14. The lower and upper bounds of P s(S) are denoted by P inf
k and P sup

k , respectively, and the

bounds of Cs(S) are denoted by C inf
k and Csup

k , respectively. These results were computed in [22] and

[23]), respectively. Recall that (P s(S))
−1

and (Cs(S))
−1

are the µ-densities of the balls of minimum

and maximum µ-density in the set of typical balls. The estimates Pk and Ck are obtained by replacing

S with Ak and µ with µk. Again, we have used open balls in the estimation of the density of the

ball of minimum µk-density, and closed balls for the density of the ball of maximum µk-density. The

centre and radius of the open ball of minimum µk-density are denoted by x∗
k and dk, respectively,

and the centre and radius corresponding to the closed ball of maximum µk-density are denoted by

y∗k and Dk. The table also contains the corresponding optimal µk-densities and their bounds. The

upper bound P sup
k := KP

k Pk of P s(S) is slightly improved here with respect to the one given in [22].

Here KP
k := (1 − 25−k

√
3
)−s instead of the value KP

k = (1 − 26−k
√
3
)−s used in [22]. This gives the value

P sup
14 = 1.671292 given in Table 2 instead of the value P sup

14 = 1.668305 given in Table 1 in [22].

The results of the following corollary are based on the estimates of Tables 1 and 2.

Corollary 32 Let S be the Sierpinski gasket.

(i) For any α ∈ Ms⌊S , Spec(α, S) is the union of two closed disjointed intervals.

(ii)

Spec(µ, S) ∼ [0.2997, 0.3567] ∪ [0.5994, 0.9951]

[0.2998, 0.3566] ∪ [0.5999, 0.9944] ⊂ Spec(µ, S) ⊂ [0.2996, 0.3568] ∪ [0.5983, 0.9970]

(iii)

Spec(P s⌊S , S) ∼ [0.5, 0.5951] ∪ [1, 1.6602]

[0.5010, 0.5945] ∪ [1, 1.6578] ⊂ Spec(P s⌊S , S) ⊂ [0.4995, 0.5963] ∪ [1, 1.6662]
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(iv)

Spec(Cs⌊S , S) ∼ [0.3012, 0.3584] ∪ [0.6023, 1]

[0.3015, 0.3577] ∪ [0.6032, 1] ⊂ Spec(Cs⌊S , S) ⊂ [0.3005, 0.3588] ∪ [0.6002, 1]

Proof. We know (see (38) in Theorem 14) that

Spec(µ, S) =
[
θsµ(z0), θ

s

µ(z0)
]
∪
[

1

P s(S)
,

1

Cs(S)

]
, (52)

and that (see (19))

Spec(α, S) = α(S)Spec(µ, S), α ∈ Ms⌊S . (53)

The two intervals in Spec(α, S), α ∈ Ms⌊S are disjointed if θ
s

µ(z0) < 1
P s(S) . Such a condition holds

(see Theorem 31, and Tables 1 and 2) because

θ
s

µ(z0) ≤ ξ
sup

14 < 0.3568

and

1

P s(S)
≥ 1

P sup
14

> 0.5983.

Using (52), Theorem 31 and (53), we have that

Spec(µ, S) ∼ [ξ
14
, ξ14] ∪

[
1

P14
,

1

C14

]
,

[
ξsup
14

, ξ
inf

14

]
∪
[

1

P inf
14

,
1

Csup
14

]
⊂ Spec(µ, S) ⊂

[
ξinf
14

, ξ
sup

14

]
∪
[

1

P sup
14

,
1

C inf
14

]
,

Spec(P s⌊S , S) ∼ [P14ξµ14
, P14ξµ14

] ∪
[
1,

P14

C14

]
,

[
P sup
14 ξsup

14
, P inf

14 ξ
inf

14

]
∪
[
1,

P inf
14

Csup
14

]
⊂ Spec(P s⌊S , S) ⊂

[
P inf
14 ξinf

14
, P sup

14 ξ
sup

14

]
∪
[
1,

P sup
14

C inf
14

]
,

(and, analogously, for Spec(Cs⌊S , S)), and the proof is completed using the corresponding estimates

of Tables 1 and 2.
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ξ
14

[ξinf
14

, ξsup
14

] d14

0.299714 [0.299656,0.299763] 0.642272

ξ14 [ξ
inf

14 , ξ
sup

14 ] D14

0.356687 [0.356645,0.356756] 0.913663

Table 1: Extreme densities at z0

Estimates of θsµ(z0) and θ
s

µ(z0), bounds and radii, dk and Dk, of the µk-optimal balls for k = 14.

x∗
14 d14 P14 [P inf

14 , P sup
14 ] (P14)

−1
= θ̊sµ14

(x∗
14, d14)

[
(P sup

14 )
−1

,
(
P inf
14

)−1
]

(0.5,0) 0.160543 1.668305 [1.667178, 1.671292] 0.599411 [0.598339, 0.599816]

y∗14 D14 C14 [C inf
14 , C

sup
14 ] (C14)

−1
= θsµ14

(y∗14, D14)
[
(Csup

14 )
−1

,
(
C inf

14

)−1
]

(
5
16 ,

√
3

16

)
0.145957 1.004903 [1.003109,1.005611] 0.995121 [0.994420, 0.996901]

Table 2: Packing and Centred measure estimates of S

Centres and radii of the balls B̊(x∗
14, d14) and B(y∗14, D14) of minimum and maximum µ14-densities,

estimates P14 and C14 of P s(S) and Cs(S), and bounds. The last two columns in the table are the

µ14-densities of the optimal balls (inverses of P s(S) and Cs(S)) and their bounds.
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Figure 1: A feasible open set.

An open rhombus R2 that is a feasible open set for S.
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(a) Values of θsµ14
(z0, d) for d ∈ [ε, 1] and ε = 0.05.

(b) Values of (g(d), θsµ14
(z0, d)), where g(d) := ε +

ε−1
log(ε)

(log(d)− log(ε)) and ε = 0.05.

Figure 2: Densities at z0
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