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Abstract

We show that the centred Hausdorff measure, Cs(S), with s = log 3
log 2

, of the Sierpiński gasket
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1 Introduction and main results

The role played by the Sierpiński gasket in the beginnings of Fractal Geometry might well be compared

to that played by the triangle or the circle in the start of Euclidean Geometry. In spite of this

fact some basic parameters of the Sierpiński gasket remain unknown. The complex nature of fractal

objects has given rise to a great variety of measurement tools such as metric measures and dimensions

in Euclidean spaces. The Hausdorff measure, Hs, the centred Hausdorff measure, Cs, the spherical

Hausdorff measure, Hs
sph, and the packing measure, P s, (see Sec. 1.2 for definitions) are some of the

existing ones that are so necessary to capture the multiple geometric properties of fractal objects. In

these measures, which we shall refer to as s-measures, the exponent s is a real positive number. We

shall denote by Ms the set
{
Hs, Cs, P s,Hs

sph

}
of metric s-measures.

For integer values of s all metric s-measures are multiples of the corresponding Lebesgue measure

Ls, so that they are well understood and computable for some families of conspicuous subsets.

If s is not an integer, the examples of s-sets (i.e. sets with finite and positive s-measure), for which

the exact value of any of these measures is known, may be considered exceptional even in the class of

self-similar sets with strong separation condition properties (see, for example, [1–7] and the references

therein). In fact, the exact value of the mentioned s-measures of almost any self-similar set, including

the Sierpiński triangle or the Koch curve, is not known.

The nature of the results shown in this paper for the centred Hausdorff measure (see also [8] for

an example with the packing measure) indicates that finding the exact value of a metric measure of a

self-similar set is essentially a problem of a computational nature. As a rule of thumb, the required

computations are easier when the constituent parts of the corresponding set are suitably separated,

but as this separation becomes shorter, the study of their properties becomes computationally more

arduous (see [9]).

In this paper we undertake the issue of computing the centred Hausdorff measure of the Sierpiński

gasket, S, a self-similar set for which the separation among its constituent parts is zero, but it satisfies

the open set condition (OSC for the sequel, see Sec. 1.1 below). To the best of our knowledge, this

is the first known computation of the centred Hausdorff measure of a connected self-similar set with

OSC. In Theorem 7 we show that Cs(S), with s = log 3
log 2 , is C-computable, in the sense that its value is
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the solution of a minimisation problem on a compact domain. See [1] for an example of a self-similar

set K in the line, with OSC, for which the Hausdorff measure is not C-computable. In Theorem 10

we show that Cs(S) is A-computable, providing an algorithm whose output converges to Cs(S), with

error bounds tending to zero.

We are witnessing a flourishing of applications of fractal geometry, its tools and methods, to

solve complex problems from different fields (see some examples in [10–13]). In keeping with the

complexity of the underlying problems, the application of some of these tools requires the construction

of computational algorithms, non-existent to date, and this is where the contribution of this article

should be placed.

We shall first summarise some basic definitions and notation to understand the problem.

1.1 The Sierpiński gasket

The Sierpiński gasket or Sierpiński triangle (see Fig. 1) is a special case of a self-similar set which is

generated by the iterated function system (IFS), Ψ = {f0,f1,f2}, of three contracting similitudes of

the plane, with contraction ratios ri :=
1
2 , i ∈ M := {0, 1, 2}, given by

fi(x) =
1

2
x+ vi, i ∈ M where v0 = (0, 0), v1 = (

1

2
, 0), and v2 =

1

4
(1,

√
3).

We use composite indices, i := i1, i2, ..., ik ∈ Mk, to denote the compositions fi := fi1 ◦ fi2 ◦ ... ◦ fik

and we write ri for the contraction ratio of fi (which equals 2−k if i ∈ Mk). We shall denote as zi to

the fixed point of each fi, i ∈ M, that is, zi = 2vi, i ∈ M.

The Sierpiński gasket S, as the attractor of Ψ, is the invariant set of the Hutchinson operator, F,

defined, for A ⊂ R2, by

F (A) := f0(A) ∪ f1(A) ∪ f2(A), (1)

S being the unique non-empty compact set admitting the self-similar decomposition

S = f0(S) ∪ f1(S) ∪ f2(S) = F (S).

S can be parameterised as S = {π(i) : i ∈ Σ} with parameter space Σ := M∞ and geometric

projection mapping π : Σ → S given by π(i) = ∩∞
k=1fi(k)(S), where i(k) ∈ Mk denotes the k-th

curtailment i1 . . . ik of i = i1i2 · · · ∈ Σ. Notice that π is non-injective. We adopt the convention
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M0 = ∅ and write M∗ = ∪∞
k=0M

k for the set of words of finite length. For any i ∈ M∗, the cylinder

sets are denoted by Si := fi(S), and Si := S, if i ∈ M0. For i ∈ Mk, Si is a cylinder of the k-th

generation, or k-cylinder.

Notation 1 Throughout the document the equilateral triangle whose vertices are zi, i ∈ M will be

denoted by T, and we shall abbreviate Ti := fi(T ) if i ∈ M∗, k ∈ N+, and Ti := T if i ∈ M0 (see

Fig. 2).

The system of similitudes Ψ satisfies the OSC (see [14]) meaning that there is an open set R ⊂ R2

satisfying fi(R) ⊂ R for all i ∈ M and fi(R)∩fj(R) = ∅ for i, j ∈ M, i ̸= j. We will refer to such

a set R as a feasible open set (for S). Furthermore, if R∩S ̸= ∅ then R satisfies the strong open

set condition SOSC (cf. [15–17]). One feasible open set that fulfils the SOSC is the open rhombus R

composed of the topological interior of the union of T and its reflection across the edge of T opposite

the point z2 (see Fig. 2). As Ψ satisfies the OSC, the dimension of all metric measures are the same

(see [18, 19] for the notion of dimension of a measure), and they also coincide with the similarity

dimension, dimS = log 3
log 2 , which is the value that satisfies

∑2
i=0 r

dimS
i = 1.

The Sierpiński triangle S can also be considered in terms of a probability measure supported by

the set S. Let P(R2) be the space of compactly supported probability Borel measures on R2 and let

M : P(R2) → P(R2) be the Markov operator, defined by

M(α) =

2∑
i=0

1

3

(
α ◦ f−1

i

)
, α ∈ P(R2).

The operator M is contractive on P(R2), equipped with a suitable metric (see [20, 21]). Its unique

fixed point, µ∗, is called the invariant or, sometimes, natural probability measure. It is supported on

S and satisfies

Mk(α) = 3−k
∑
i∈Mk

(
α ◦ f−1

i

) w−−−−→
k→∞

µ∗ (2)

for any α ∈ P(R2). Here,
w→, denotes the weak convergence of measures and Mk = M ◦M ◦ ... ◦M is

the k-th iterate of M. Furthermore, µ∗ coincides with the projection on S of ν,

µ∗ = ν ◦ π−1, (3)

where ν is the Bernoulli measure on Σ that gives weight 1
3 to each symbol in M (see [20]).
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By (3), we know that µ∗(Si) = 3−k for i ∈ Mk. On the other hand, any metric measure α ∈ MdimS

scales under similitudes, i.e. α(Si) = rdimS
i α(S) = 3−kα(S), for i ∈ Mk. Since µ∗ and α, are multiples

on cylinder sets, they are indeed multiple measures, and then, all the normalised measures (α(S))
−1

α⌊S

coincide with µ∗ and with the normalised Hausdorff measure µ := Hs⌊S
Hs(S) , with s = dimS. Here, β⌊S

stands for the restriction of the measure β to S.

Remark 2 From now on we shall work with the measure µ rather than with other metric mea-

sures on S, bearing in mind that if s = dimS, A is a Borel set and α ∈ Ms⌊S with Ms⌊S :={
Hs⌊S , Cs⌊S , P s⌊S ,Hs

sph⌊S
}
, we have

α(A) = α(S)µ(A). (4)

Whence the computation of α(A) boils down to the computation of α(S) plus the computation of µ(A).

Notation 3 From now on, we shall write B for the set of closed balls B(x, d) centred at x ∈ S and

with radius d > 0 satisfying that there is some feasible open set R for S with B(x, d) ⊂ R.

1.2 Metric measures and their relationship with s-densities

In this paper we refer to the set Ms =
{
Hs, Cs, P s,Hs

sph

}
as the set of metric measures (cf. Chapter 1

in [22]).

Following Saint Raymond and Tricot (see [23]), the Hausdorff centred measure, Cs(A), of a subset

A ⊂ Rn is defined in a two-step process (see [24] for definitions on general metric spaces). First, the

premeasure Cs
0(A) is defined for any s > 0 by

Cs
0(A) = lim

δ→0
inf

{ ∞∑
i=1

(2di)
s : 2di ≤ δ, i = 1, 2, . . .

}
, (5)

where the infimum is taken over all coverings, {B(xi, di)}i∈N+ , of A by closed balls B(xi, di) centred

at points xi ∈ A. The second step, needed by the lack of monotonicity of Cs
0(A) due to the restriction

xi ∈ A, i ∈ N+ (cf. [25] and [26, Example 4 ]), leads to the following definition of the centred Hausdorff

s-dimensional measure

Cs(A) = sup {Cs
0(F ) : F ⊂ A, F closed} .

However, in [26] it is proved that, if E is a self-similar set with OSC, A ⊂ Rn is a compact set,

and s is its similarity dimension [20], then Cs(A∩E) = Cs
0 (A ∩ E) implying that the second step can
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be omitted. As we shall see, this makes it possible to reduce the problem of calculating this fractal

measure to the computation of the optima of certain density functions (see (6)).

In regard to metric measures based on packings, the standard packing measure, P s, is relevant in

this research. It is defined in a two-step process, first by taking

P s
0 (A) = lim

δ→0
sup

{ ∞∑
i=1

(2di)
s : 2di ≤ δ, i = 1, 2, . . .

}
,

where the supremum above is taken over all δ-packings {B(xi, di)}i∈N+ , with xi ∈ A for all i, and

B(xi, di) ∩B(xj , dj) = ∅ for i ̸= j, and then

P s(A) = inf

{ ∞∑
i=1

P s
0 (Fi)

}
,

where the infimum is taken over all coverings {Fi}i∈N+ of A by closed sets Fi. When A is a compact set

with P s
0 (A) < ∞, then P s(A) = P s

0 (A) holds, and the second step above might be omitted (see [27]).

The spherical s-dimensional Hausdorff measure, Hs
sph(A), is obtained by removing in (5) the re-

quirement that the balls are centred at points of A. Finally, the classical s-dimensional Hausdorff

measure, Hs(A), results if coverings of A by arbitrary subsets, {Ui}i∈N+ , are considered and 2di is

replaced in (5) with the diameter of Ui, |Ui| . No second step is required for these two last measures.

Let us recall that, for α ∈ ∪s>0Ms and A ⊂ Rn, the α-dimension of A is defined by dimα A =

inf {s : α(A) = 0} and that dimα(S) =
log 3
log 2 (see [19] for the definition of the dimension of a set with

respect to a metric measure).

We now introduce the s-densities, a useful tool for analysing the behaviour of metric measures

defined for measures α ∈ Ms⌊A by

θsα(x, d) =
α(B(x, d))

(2d)s
, s > 0, x ∈ Rn, d > 0. (6)

A fundamental result in geometric measure theory (Marstrand’s theorem, [28]) states that, except

when s is an integer, the limiting values

θ
s

α(x) = lim sup
d→0

θsα(x, d) and θsα(x) = lim inf
d→0

θsα(x, d), (7)

called upper and lower s-densities of α respectively, cannot coincide on subsets A ⊂ Rn of positive

α-measure. Furthermore, classical results in fractal geometry (see, for instance, [29]) show that these

limiting behaviours on subsets A ⊂ Rn of positive α-measure can determine global properties of these
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subsets. In particular, there are bounds on the values α(A), A ⊂ Rn, α ∈ {Hs⌊A, P s⌊A} provided

that the values θ
s

α(x) and θsα(x) are bounded for x ∈ A. These deep results are quite general, as they

stand for arbitrary subsets of Rn. Unfortunately, they are useless for computing α(A) for general A,

since the computation of the involved limits is out of reach. But if E is a self-similar set satisfying

OSC and s = dimE, then Morán proved in [30] that,

P s(E) = sup
{(

θsµ(x, d)
)−1

: B(x, d) ∈ B
}
, (8)

(recall Notation 3). In that reference, analogous results for Hs(E) and Hs
sph(E) are also proved and

they were extended in [26] to the characterisation of Cs(E), namely

Cs(E) = inf
{(

θsµ(x, d)
)−1

: x ∈ E and d > 0
}
. (9)

However, even with these results, the numerical computation of the values defined in (8) and (9) is

still out of reach without further restrictions on the set of balls, since the computational time grows

exponentially as their diameters decrease (see discussion in [9]).

In [9,31–33], it was shown that, for self-similar sets E where the strong separation condition (SSC)

holds (i.e. fi(E)∩fj(E) = ∅ for i, j ∈ M, i ̸= j), the determination of α(E), α ∈ {Cs⌊E , P s⌊E} , starts

to be computationally amenable, as the classes of balls to be explored can be reduced to those centred

at E and with diameters within a known interval bounded away from zero. As the function (θsα(x, d))
−1

is known to be a continuous function, both in x and in d (see [19]), the supremum and infimum in (8)

and (9) then became a maximum and a minimum, respectively. In the terminology of this article, they

are C-computable. The method is not only able to render estimates of P s(E) and Cs(E), but also

allows an explicit construction of optimal coverings and packings [31]. Moreover, explicit formulas for

α(E) can be found under additional, stronger forms of separation than SSC (see [34]).

1.3 Results

In this paper we make computational work with the Sierpiński gasket S, where SSC does not hold,

and the results mentioned above cannot be applied. From now on we set s = dimS = log 3
log 2 . Using

the symmetries of S, Theorem 7 in Sec. 2, narrows down the search in the class of balls given in (9)

to the class of closed balls centred at points of the cylinder set of the second generation S01 (which

7



amounts, from a computational viewpoint, to 1
9 of the points in the discrete approximations of S).

Furthermore, the existence of internal homotheties permits the suppression of balls with a radius

outside the interval
[√

3
16 ,

√
3
8

]
, leading to a C-computable problem that is easier, in general, than the

SSC case if the distance among the 1-cylinders is smaller than
√
3

16 . The issue of computation of exact

values of metric measures in self-similar sets with OSC other than S remains, so far, a challenge.

From a theoretical point of view, the results in Theorem 7 show that S is a Cs-exact self-similar

set (see [35]), which means that there exist a ball for which the maximal density is attained, and an

optimal covering by balls centred on S for which the exact value of Cs(S) is reached.

In Sec. 3, we outline the main ideas for tackling the computational task through an algorithm

aimed at approaching the value of Cs(S), with which we obtain the following estimate

Cs(S) ∼ 1.0049.

In Theorem 10 we give, in addition to the estimates of Cs(S), explicit lower and upper bounds for Cs(S)

provided by the algorithm at each stage k, and we show that the errors tend to zero (A-computability

of Cs(S)).

Since θsα(x, d) = α(S)θsµ(x, d), for α ∈ Ms⌊S , if we gather the estimate and bounds for Cs(S) with

the corresponding to P s(S) given in [8] then, from the full range of values of θsµ(x, d) on balls in B

(recall Notation 3), we obtain the information of the full range of values of θsα(x, d) for α ∈ {µ,Cs⌊S ,

P s⌊S}. See in Fig. 3 the balls that our algorithm give as balls of maximum and minimum density,

respectively.

If we consider the definitions of Cs(S) and P s(S), their values capture global covering and packing

properties of S. We now see that they also convey essential information about the geometry of the

family of spherical neighbourhoods of S.

By (9) we know that, for any x ∈ S any d > 0,

µ(B(x, d))

(2d)s
≤ Cs(S)−1 (10)

holds, and that this uniform upper bound for θsµ(x, d) is tight for the whole family of spherical neigh-

bourhoods, {B(x, d), x ∈ S, d > 0} (i.e. it is the least common upper bound for that family of balls).

Analogously we can obtain a uniform lower bound for θsµ(x, d) through (8). Let A1 be the set of

the three fixed points of Ψ. It can be easily seen [35] that if x ∈ S − A1 and d is small enough, then
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B(x, d) ∈ B, so (8) gives

µ(B(x, d))

(2d)s
≥ P s(S)−1. (11)

Thus, P s(S)−1 yields a uniform lower bound for θsµ(x, d), which is tight for the family of balls B.

Furthermore, the values of Cs(S) and P s(S) also give an essential information about the pointwise

behavior of the densities θsµ(x, d) for µ-a.e. x ∈ S. In order to study such behaviour, we consider the

spectrum of asymptotic α-densities of subsets A of S, which is defined as

Spec(α,A) =
{

lim
n→∞

θsα(x, rn) : x ∈ A, lim
n→∞

rn = 0
}
,

for α ∈
{
µ,Cs⌊S , P s⌊S ,Hs⌊S ,Hs

sph⌊S
}
. In [35] it is proved that

Spec(µ, x) =
[
θsµ(x), θ

s

µ(x)
]
=

[
1

P s(S)
,

1

Cs(S)

]
, (12)

for µ-a.e. x ∈ S (see notation in (7)). An analogous result is true for any self-similar set E satisfying

SOSC). Thus, Spec(µ, x) is an interval which gives the full range of variation of the asymptotic densities

at µ-a.e. x ∈ S, range that, by (12), is determined by the values of Cs(S) and P s(S). Note that (12)

implies that the bounds in (10) and (11) are tight, µ-a.e. x, for the family of balls {B(x, r), x ∈ E} .

More in general, it is known (see [29]) that if a self-similar set E of dimension s is rectifiable, then s

must be an integer and P s(E) = Cs(E), so the length of Spec(µ, x) is null for µ-a.e. x ∈ E. In contrast,

if E is unrectifiable (as it happens to occur, for instance, if s is non-integer), then P s(E) > Cs(E) and

the length of Spec(µ, x) which, by [35], is known to be constant for µ-a.e. x ∈ E, gives an useful index

of the irregularity of E.

Using the estimates and bounds for Cs(S) given in Sec. 3, together with the corresponding ones

for P s(S) given in [8], we get that Spec(µ, x) ∼ [0.5994, 0.9951] , that

Spec(µ, x) ⊂ [0.5983, 0.9970] (13)

µ-a.e. x ∈ S and we also get Spec(α, x) for α ∈ {Cs⌊S , P s⌊S} (see [35] for the full spectrum Spec(α, S),

α ∈ {µ,Cs⌊S , P s⌊S}). These are the first known non-trivial estimates for the spectrum of asymptotic

densities for metric s-dimensional measures on self-similar sets with OSC.

Further, using the bounds

0.77 ≤ Hs(S) ≤ 0.8192
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obtained algorithmically by P. Mora in [36] from a theoretical result of B. Jia in [37], and (13), we

are able to produce the first non-trivial estimate for the asympotic spectrum of Hs on self-similar sets

with OSC, namely

Spec(Hs⌊S , x) = Hs(S)Spec(µ, x) ⊂ [0.4607, 0.8167],

for Hs-a.e. x ∈ S.

2 Computability of the centred Hausdorff measure of S

In this section we prove the C-computability (Theorem 7) and the A-computability (Theorem 10) of

Cs(S).

2.1 C-computability of Cs(S)

The symmetry of the Sierpiński gasket can be leveraged to achieve a crucial reduction on the set of the

candidate balls to be optimal given in (9), conducive to handling the computability problem of Cs(S)

with a suitable algorithm. The following two properties, valid for a general set E ⊂ Rn, are useful.

Lemma 4 Let E ⊂ Rn, α ∈ Ms⌊E and h : Rn → Rn be a similarity with scaling factor rh.

(i) If A ⊂ Rn satisfies h(A ∩ E) = h(A) ∩ E, then α(h(A)) = rshα(A).

(ii) If C ⊂ E satisfies h(C) ⊂ E, then

α

(
B(h(x), rhd) ∩ h(C)

)
= rshα(B(x, d) ∩ C).

Proof. It is well known that all metric measures scale under similarities so that, if β ∈ Ms, h is a

similarity with contraction ratio rh and A ⊂ Rn, then β(h(A)) = rshβ(A). Under our hypothesis

β⌊E(h(A)) = β (h(A) ∩ E) = β(h (A ∩ E)) = rshβ⌊E(A).

This proves (i). Under the hypotheses in (ii), taking B(x, d) ∩ C as A in (i)

h

(
B(x, d) ∩ C ∩ E

)
= h

(
B(x, d) ∩ C

)
= h(B(x, d)) ∩ h(C)

= h(B(x, d)) ∩ h(C) ∩ E = h

(
B(x, d) ∩ C

)
∩ E,

and (ii) follows.
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Remark 5 If we take E = S in Lemma 4, then α can be replaced with µ, since µ is a multiple of the

measures in Ms⌊S . In general, if E is a self-similar set with OSC and s = dimE, then α can be taken

to be the invariant measure of E (for the Markov operator).

The proof of Theorem 7 below relies upon finding a reduced set of balls where all the relevant

values of θsµ(x, d) are attained. A basic tool to this end is the notion of density equivalent balls.

Definition 6 We say that B(x, d) with x ∈ S is density equivalent to B(x′, d′), if x′ ∈ S and

θsµ(x, d) = θsµ(x
′, d′).

Theorem 7

Cs(S) = min

{(
θsµ(x, d)

)−1
: x ∈ S01,

√
3

16
≤ d ≤

√
3

8
.

}
(14)

Proof. We show first that

Cs(S) = inf
{(

θsµ(x, d)
)−1

: x ∈ S01, d > 0
}
. (15)

Let πi be the reflection across the altitude, hi, of T (recall Notation 1) through zi, i ∈ M (see Fig. 2).

Since π1(S2) = S0, π2(S1) = S0 and π0(S02) = S01, Lemma 4 (i) applied to πi and µ (see also Remark

5), implies, on the one hand, that any ball centred in Si, i = 1, 2 is density equivalent to a ball centred

in S0 and, on the other hand, that any ball centred in S02 is density equivalent to a ball centred in

S01. So, we can restrict our search to balls centred in S00 ∪ S01.

Let x ∈ S00 and d > 0. In order to show that we can neglect B(x, d), consider first the case

B(x, d)∩S ⊂ S0. Then Lemma 4(ii) implies that B(x, d) is density equivalent to B(f−1
0 (x), 2d). Further,

if f−1
0 (x) ∈ S02, then B(x, d) is density equivalent to B(π0(f

−1
0 (x)), 2d), centred in S01. If f

−1
0 (x) ∈ S00,

we can repeat the argument k times until f−k
0 (x) ∈ S02 ∪ S01 or B(f−k

0 (x), 2kd) ∩ (S1 ∪ S2) ̸= ∅.

Consider now the case x ∈ S00 and B(x, d) ∩ (S1 ∪ S2) ̸= ∅. Then, B(x, d) is either not optimal or

it is density-equivalent to some ball centred in S01 because

(
θsµ(x, d)

)−1
=

(2d)s

µ(B(x, d))
≥ (2d)s

µ(B(π4(x), d))
=
(
θsµ(π4(x), d)

)−1
, (16)

where π4 is the reflection across the altitude h4 of T0 through f2(z0) (see Fig. 2). The inequality in

(16) follows from

µ(B(x, d)) ≤ µ(B(π4(x), d)). (17)

11



In order to check (17), we decompose B(x, d) into the union

B(x, d) ∩ S =

(
B(x, d) ∩ S0

)
∪
(
B(x, d) ∩ (S1 ∪ S2)

)
(18)

and analogously,

B(π4(x), d) ∩ S =

(
B(π4(x), d) ∩ S0

)
∪
(
B(π4(x), d) ∩ (S1 ∪ S2)

)
. (19)

Since π4(S0) = S0, Lemma 4(ii) gives

µ (B(x, d) ∩ S0) = µ (B(π4(x), d) ∩ S0) .

Now, if y ∈ B(x, d) ∩ (S1 ∪ S2) , since S1 ∪ S2 is contained in the right hand half plane determined by

h4 and x belongs to the left-hand half plane, we see that |π4(x)− y| ≤ |x− y| holds, and

B(x, d) ∩ (S1 ∪ S2) ⊂ B(π4(x), d) ∩ (S1 ∪ S2) . (20)

Thus, in the decompositions given in (18) and (19) the µ-measure of the first terms are equal, whilst,

by (20), the µ-measure of the second term cannot be smaller in (19) than in (18), which gives (17).

Once we have proved that (15) holds, we show that we can restrict the search to balls with radii

within the range [
√
3

16 ,
√
3
8 ].

Let x ∈ S01 and d <
√
3

16 . Clearly, B(x, d) ∩ S ⊂ S0 ∪ S1.

Suppose first that B(x, d)∩S ⊂ S0, then we can apply Lemma 4 (ii) to conclude that B(f−1
0 (x), 2d),

centred in S1, is density equivalent to B(x, d). Moreover, we have already seen that such a ball is

either density equivalent to a ball of equal or greater radius and centred in S01 or cannot be optimal.

Hence, we can iterate the argument till d ≥
√
3

16 or we find a density equivalent ball centred in S01

and intersecting S1. Observe that if we need k iterations of the argument to achieve a ball of radius

2kd ≥
√
3

16 , then 2k−1d <
√
3

16 ≤ 2kd, implying that 2kd ∈ [
√
3

16 ,
√
3
8 ].

Now, if B(x, d)∩S1 ̸= ∅ (recall that we have assumed that d <
√
3

16 ), then x ∈ S011 and B(x, d)∩S =

B(x, d) ∩ (S01 ∪ S100). Therefore, if we take the homothety, h : R2 → R2, of ratio 2 and fixed point at

the unique point of S0 ∩ S1, h(S01) = S0 and h(S100) = S10 imply that

h

(
B(x, d) ∩ S

)
= h

(
B(x, d) ∩ (S01 ∪ S100)

)
= B(h(x), 2d) ∩ (S0 ∪ S10)

= B(h(x), 2d) ∩ S.

12



Lemma 4(i) shows then that µ(B(h(x), 2d)) = 2sµ(B(x, d)), which implies that B(h(x), 2d) is

density equivalent to B(x, d). If
√
3

16 ≤ 2d, we have concluded because 2d ∈ [
√
3

16 ,
√
3
8 ] and h(x) ∈ S01.

Otherwise, we can repeat the argument as many times as needed until
√
3

16 ≤ 2d.

Finally, if x ∈ S01 and d >
√
3
8 , then, since f1(B(x, d) ∩ S) = B(f1(x),

d
2 ) ∩ S1 and f1(x) ∈ S101 we

get, by Lemma 4 (ii), that

µ(B(x, d)) = µ(B(x, d) ∩ S) = 2sµ

(
B

(
f1(x),

d

2

)
∩ S1

)
≤ 2sµ

(
B

(
f1(x),

d

2

))
= 2sµ

(
B

(
π2(f1(x)),

d

2

))
, (21)

with π2(f1(x)) ∈ S01.

The proof of (14) concludes by noticing that (21) implies that (θsµ(x, d))
−1 ≥ (θsµ(π2(f1(x)),

d
2 ))

−1

and that we can repeat this procedure k ∈ N+ times until
√
3

16 ≤ 2−kd ≤
√
3
8 , obtaining on each step a

ball centred in S01 with less or equal inverse density.

2.2 A-computability of Cs(S)

In this section we construct a discrete algorithm that converges to Cs(S) and we provide error bounds

tending to zero for its estimates, thus showing that Cs(S) is A-computable.

Following the structure of the algorithms developed in [9], [26] and [32], the construction of such an

algorithm relies upon the relationship between the centred Hausdorff measure and the inverse density

function given in Theorem 7. With the aim of finding a computationally adequate estimate of the

minimum value given in (14), a discrete approximation of both the Sierpiński gasket and the invariant

measure is proposed.

Firstly, it is well-known that, for any non-empty compact subset A ⊂ R2, S can be built with an

arbitrary level of detail by increasing the iterations k in F k(A), where F k = F ◦ F... ◦ F is the k-th

iterate of the Hutchinson operator F (see (1)). This is because limk→∞ F k(A) = S with respect to

the Hausdorff metric, given that S is the attractor of Ψ under the contracting operator F (cf. [20]).

Furthermore, if A ⊂ S, then F k(A) ⊂ S for any k ∈ N+. We use these facts in the design of our

algorithm where we take as initial compact set A1 := {z0, z1, z2} (recall that zi ∈ M are the fixed

points of the similitudes in Ψ) and obtain the set

Ak := F k−1(A1) ⊂ S, k ≥ 2 (22)

13



as a discrete approximation of S, at iteration k, of our algorithm.

If we take α = µ1 := 1
3 (δz0+δz1+δz2) as the initial measure in (2), where δx is the Dirac probability

measure at x, then

µk := Mk−1(µ1) =
1

3k−1

∑
i∈Mk−1

µ1 ◦ f−1
i =

1

3k

∑
i∈Mk−1

(
δfi(z0) + δfi(z1) + δfi(z2)

)
(23)

is a probability measure supported on Ak ⊂ S and µk
w−−−−→

k→∞
µ.

The discrete measure µk is the approximation of the invariant measure µ that our algorithms take

at iteration k.

For i ∈ Mk−1, δfi1...ik−2
(zik−1

) is an atom of µk and a summand in the right-hand term in (23).

Since fi(zj) = fj(zi), for i, j ∈ M, with i ̸= j, all the points in A2 − A1 have two codes in M2. From

this, it easily follows that all the points in Ak −A1 also have two codes in Mk, k ≥ 2, (see [8], Sec. 3),

and therefore we can write (23) as

µk =
1

3k
(δz0 + δz1 + δz2) +

2

3k

∑
x∈Ak\A1

δx. (24)

The algorithm outlined in Sec. 3 works with the sets Ak ⊂ S defined in (22) and with the measures µk

defined in (24) as approximations of the Sierpiński gasket S and of the invariant measure µ at iteration

k, respectively.

Addressing the issue of establishing error bounds in the estimates of the µ-measure of balls through

the approximating µk-measures, the following lemma allows us to make the comparison of the µ

measure and the µk-measure in two relevant cases.

Lemma 8

(i) Let
{
Si : i ∈ I ⊂ Mk

}
, k ∈ N+, be a collection of k-cylinder sets. Then

µ

(⋃
i∈I

Si

)
≤ µk

(⋃
i∈I

Si

)

(ii) Let A ⊂ S, k ∈ N+, and I :=
{
i ∈ Mk : Si ∩A

}
̸= ∅. Then

µk(A) ≤ µ

(⋃
i∈I

Si

)

Proof. For any i ∈ I we know that µ(Si) = 3−k, so

µ

(⋃
i∈I

Si

)
=
∑
i∈I

µ (Si) = 3−k#(I) (25)
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where #(I) denotes the cardinality of I. We know that each cylinder Si contains a unique point,

x̂ ∈ Ak (namely x̂ := π(i1i2...ik−1ikikik...)) = fi1i2...ik−1
(zik)), and that each point of (

⋃
i∈I

Si) ∩ Ak

either belongs to a unique k-cylinder in {Si : i ∈ I} (let us write Ak,1(I) for such subset of Ak), or

belongs to the set Ak,2(I), or subset of points of Ak that lie on two k-cylinders of {Si : i ∈ I} . Hence

Ak ∩

(⋃
i∈I

Si

)
= Ak,1(I) ∪Ak,2(I)

with Ak,1(I) ∩Ak,2(I) = ∅. Then, since

A1 ∩

(⋃
i∈I

Si

)
⊂ Ak,1(I) ∩

(⋃
i∈I

Si

)

and, in consequence A1 ∩Ak,2(I) = ∅, we have

µk

(⋃
i∈I

Si

)
= µk

((⋃
i∈I

Si

)
∩Ak

)

= µk

(
Ak,1(I) ∩A1

)
+ µk

(
Ak,1(I) ∩ (Ak −A1)

)
+ µk

(
Ak,2(I) ∩ (Ak −A1)

)
=

1

3k

{
#

(
Ak,1(I) ∩A1

)
+ 2#

(
Ak,1(I) ∩ (Ak −A1)

)
+ 2#

(
Ak,2(I) ∩ (Ak −A1)

)}
≥ 1

3k

{
#(Ak,1(I)) + 2#

(
Ak,2(I) ∩ (Ak −A1)

)}
=

1

3k

{
#(Ak,1(I)) + 2# (Ak,2(I))

}
.

(26)

Let J := {i ∈ Mk : i = i1i1...i1, i1 ∈ M}, k > 1 and i ∈ Mk\J. For each cylinder Si, there is

i∗ ∈ Mk\J such that Si ∩ Si∗ = Si ∩ Si∗ ∩Ak consists of a unique point. Consider the partition of I,

I = I0 ∪ I1 ∪ I2 where I0 := J ∩ I, I1 := {i ∈ I : i∗ /∈ I} and I2 := {i ∈ I : i∗ ∈ I}. Since there is a

bijective mapping between Ak,1(I) and I0∪ I1, an injective mapping between Ak,2(I) and I2, and each

cylinder Si, i ∈ Mk contains a unique point in Ak,2(I), we get that #(Ak,1(I)) = #(I0)+ (#(I1)) and

2#(Ak,2(I)) = (#(I2)). This, together with (26) and (25) gives

µk

(⋃
i∈I

Si

)
≥ 1

3k
#(I) = µ

(⋃
i∈I

Si

)
.

Observe that the equality holds if and only if the set in the other term affected by a coefficient 2,

Ak,1(I) ∩ (Ak −A1), is empty.

In order to prove (ii), note that Ak,1(I) ∩ (Ak − A1) = ∅, since if some cylinder in {Si : i ∈ I}

intersects the set A ∩ (Ak − A1) at a point x, then there is another cylinder to which x also belongs

and this cylinder also belongs in turn to the collection of cylinders {Si : i ∈ I} . Thus, using the above
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decomposition of µk

((⋃
i∈I

Si

)
∩Ak

)
and by the final observation,

µk(A) = µk(A ∩Ak) ≤ µk

((⋃
i∈I

Si

)
∩Ak

)

= µk

(
Ak,1(I) ∩A1

)
+ µk

(
Ak,2(I) ∩ (Ak −A1)

)
=

1

3k
#(I) = µ

(⋃
i∈I

Si

)
.

Theorem 10 below establishes the A-computability of Cs(S). It is a discrete version of Theorem 7,

suitable for our computational purposes as it gives the estimates and the lower and upper bounds of

Cs(S) at each iteration k, namely, Ck, C
inf
k and Csup

k respectively. We first prove the following lemma.

Lemma 9 Let k > 0, x ∈ R2 and d > 2−k. Then,

(i) µ(B(x, d)) ≥ µk(B(x, d− 2−k))

(ii) If S ⊈ B(x, d) and B(x, d) ∩ Ak ̸= ∅, then there is yk ∈ Ak satisfying µ(B(x, d)) ≤ µk(B(x, dk)),

where dk = |yk − x| and d− 2−k ≤ dk ≤ d+ 2−k.

Proof. Let k > 0, x ∈ R2 and d > 2−k.

(i) Let

Jk := {i ∈ Mk : Si ⊂ B(x, d)}

and

Hk := {i ∈ Mk : B(x, d− 2−k) ∩ Si ̸= ∅}.

Clearly, Hk ⊂ Jk holds. Then, using Lemma 8 (ii)

µk(B(x, d− 2−k)) ≤
∑
i∈Hk

µ(Si) ≤
∑
i∈Jk

µ(Si) ≤ µ(B(x, d)).

(ii) We prove first that, if S ⊈ B(x, d) and B(x, d) ∩Ak ̸= ∅, the set

Gk := {i ∈ Mk : ∂B(x, d) ∩ Si ̸= ∅}

is non empty, where ∂B(x, d) is the border of B(x, d). Let U(x, d) denote the open ball centred at x

and with radius d. If Gk = ∅, then

⋃
i∈Mk

Si ⊂ U(x, d) ∪ (B(x, d))
c
. (27)
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Since B(x, d)∩Ak ̸= ∅ and we may assume that ∂B(x, d)∩Ak = ∅ or Gk would be trivially nonempty,

we see that U(x, d) ∩ (∪i∈MkSi) ̸= ∅, and S ⊈ B(x, d) implies that the set (B(x, d))
c ∩ (∪i∈MkSi)

is nonempty, so (27) contradicts that for any k > 0, ∪i∈MkSi is a connected set and our claim that

Gk ̸= ∅ is proved.

Let

Ik := {i ∈ Mk : B(x, d) ∩ Si ̸= ∅}

and

dk := max{|y − x| : y ∈ Ak ∩ (∪i∈IkSi)}.

Let z ∈ Ak satisfying dk = |z − x| . Then, dk ≤ d+2−k, since ∪i∈IkSi ⊂ B(x, d+2−k) and, using part

(i) of Lemma 8, we have

µ(B(x, d)) ≤ µ(∪i∈IkSi) ≤ µk(∪i∈IkSi)

= µk

((
∪i∈IkSi

)
∩Ak

)
≤ µk (B(x, dk)) .

Finally, using that ∂B(x, d) ∩ (∪i∈MkSi) ̸= ∅ we see that

dk ≥ max{|y − x| : y ∈ Ak ∩ (∪i∈Gk
Si)} ≥ d− 2−k.

Theorem 10 Let

Ck = min

{
(θsµk

(x, d))−1 : x ∈ Ak ∩ S01 and d = |y − x| with y ∈ Ak and

√
3

16
≤ d ≤

√
3

8
+ 21−k

}
.

(28)

Then, for every k ≥ 4,

C inf
k ≤ Cs(S) ≤ Csup

k (29)

holds, where

C inf
k = KkCk, Kk =

(
1 +

25−k

√
3

)−s

, Csup
k =

(2dk)
s

µk(B(xk, dk − 2−k))
(30)

and B(xk, dk) is a ball minimising (28).

Proof. Let k ≥ 4, and let B(xk, dk) be a ball minimising (28). We know that Ck =
(
θsµk

(xk, dk
)
)−1,

and
√
3

16 ≤ dk ≤
√
3
8 + 21−k. Using (9) and Lemma 9 (i), we get

Cs(S) ≤ (2dk)
s

µ(B(xk, dk))
≤ (2dk)

s

µk(B(xk, dk − 2−k))
= Csup

k ,

17



where Csup
k is well defined since dk − 2−k ≥

√
3

16 − 2−k ≥ 0 and µk(B(xk, dk − 2−k)) > 0, as xk ∈

B(xk, dk − 2−k) ∩Ak.

In order to prove the inequality C inf
k ≤ Cs(S), let (x, d) ∈ S× [

√
3

16 ,
√
3
8 ] be such that Cs(S) = (2d)s

µ(B(x,d)) .

Let i ∈ Mk be such that x ∈ Si, and let yk = Si ∩Ak. Since B(x, d) ⊂ B(yk, d+ 2−k) we get

µ(B(x, d)) ≤ µ(B(yk, d+ 2−k)). (31)

Taking the ball B(yk, d+ 2−k) as B(x, d) in Lemma 9 (ii) we can get a point zk ∈ Ak satisfying that

µ(B(yk, d+ 2−k)) ≤ µk(B(yk, d
∗
k)), (32)

where d∗k := |zk − yk| and d∗k ∈ [d, d + 21−k] ⊂ [
√
3

16 ,
√
3
8 + 21−k]. Then using (31), (32), (28), that

d∗k ≤ d+ 21−k, and that d ≥
√
3

16 we get

Cs(S) =
(2d)s

µ(B(x, d))
≥ (2d)s

µk(B(yk, d∗k))
=
(d∗k
d

)−s (
θsµk

(yk, d
∗
k)
)−1

≥
(d∗k
d

)−s

Ck ≥
(d+ 21−k

d

)−s

Ck ≥
(
1 +

25−k

√
3

)−s

Ck = C inf
k .

Remark 11 Notice that the convergence of the algorithm follows directly from the convergence of Ck

to Cs(S) as k tends to infinity. The last holds true from (29), (30) and that the fact that C inf
k =

Kk
(2dk)

s

µk(B(xk,dk))
, where Kk tends exponentially to 1 when k tends to infinity. The resulting upper bound

for the error is Csup
k −C inf

k . Obtaining a desirable explicit bound in terms of k is, however, non-trivial

as it depends on the number of k-cylinders intersected by the circular crown B(xk, dk)−B(xk, dk−2−k)

(see [9] for explicit bounds depending on k for the errors of the estimations of Cs(E) and P s(E) for

self-similar sets E satisfying SSC).

Theorem 10 gives error bounds in the estimation of Cs(S) in terms of the density of the ball selected

by the algorithm as optimal, but it does not give any error bound on the estimation of the centre and

of the radius of the optimal ball. Such estimations remain so far an open problem.

Remark 12 Recall (see Remark 2) that having an estimate of α(S), allows one to estimate α(A) for

any Borel set A, and α ∈ Ms⌊S. In particular, taking α = Cs⌊S and A = B(x, d) in (4) we get

Cs⌊S(B(x, d)) = Cs(S)µ(B(x, d)). (33)
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Then, for sufficiently large k, we have

Cs⌊S(B(x, d)) ∼ Ckµk(B(x, d)), (34)

where ∼ denotes approximate equality. Moreover, if k ≥ 4, and d > 2−k, then the combination of (33),

(34), Theorem 10 and Lemma 9 guarantee

C inf
k µk(B(x, d1)) ≤ Cs⌊S(B(x, d)) ≤ Csup

k µk(B(x, d2)), (35)

where d1 := d− 2−k > 0, and d2 := d+ 2−k.

3 Algorithm and numerical results

The numerical results of this section are obtained through an algorithm that computes Ck and the

bounds of Cs(S), C inf
k and Csup

k , given in Theorem 10.

3.1 The algorithm

The structure of this new algorithm is akin to the one presented in [8] for P s(S), so we will simply

describe it in general terms, making a comparison with its equivalent for the packing measure and

referring the interested reader to [8] for further details.

The analogous result to Theorem 10 for P s(S) is included in the remark below (Theorem 7 in [8]).

The proof of Theorem 10 using part (ii) of Lemma 9 introduces a novel approach that can be generalised

to improve the values of d0, K
P
k , and the restriction k ≥ 6 in the remark below, which could be

replaced with d̃0 :=
√
3

16 − 21−k, K̃P
k :=

(
1− 25−k

√
3

)−s

, and k ≥ 4 respectively. Remark 13 will ease the

understanding of the changes required for the adaptation of the algorithm for the estimation of P s(S)

to the estimation of Cs(S).

Remark 13 For every k ≥ 6,

P inf
k ≤ P s(S) ≤ P sup

k

where

Pk := max

{(
θ̊sµk

(x, d)
)−1

: x ∈ Ak ∩ S01, d = |y − x| with y ∈ Ak\S2 and d0 ≤ d ≤ dx

}
, (36)
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d0 :=
√
3

16 −22−k, dx := max{|y − x| : y ∈ ∂R}, R is a feasible open set for S, θ̊sµk
(x, d) is the µk-density

of the open ball U(x, d),

P inf
k :=

(2dk)
s

µk(U(xk, dk + 2−k))
, KP

k :=

(
1− 26−k

√
3

)−s

, P sup
k := KP

k Pk, (37)

and U(xk, dk) is an open ball that maximises (36).

Let us briefly list the changes required to adapt the algorithm described in [8] and based on the

result of Remark 13 to our case, avoiding unnecessary duplication.

1. Replace maximums with minimums. Recall that for any k ≥ 4, the aim of the algorithm for

the estimation of Cs(S) is to find a ball, B(x, d) of minimal inverse µk-density where d = |x− y| ,

x ∈ Ak ∩ S01, and y ∈ Ak. For the estimation of P s(S) the goal was to maximise the inverse

density, so this has to be changed accordingly.

2. New bounds. The definitions of C inf
k , Csup

k and Kk given in (30), are analogous to the ones of

P inf
k , P sup

k and KP
k given in (37). Thus, to rewrite the algorithm the roles of P inf

k , KP
k and P sup

k

have to be switched with those of C inf
k , Kk and Csup

k , respectively.

3. Range of radii. Computing the terms µk(B(x, d)) and (2d)s needed to find the minimum value

given in (28), requires the calculation of the distances from each x ∈ Ak ∩ S01 to all the points

in Ak and the selection of those within the allowed range of radii given in (28). The µk-measure

of the resulting balls is then obtained by arranging in a list the sequence of feasible distances

in increasing order so that the position of a distance d in the list, together with the distances

that are equal to d, provides the number of points of Ak within B(x, d), and hence it gives

µk(B(x, d)). Since the constrains on the radii of these candidates to optimal balls differ from

one case to another, it should be adapted by replacing d0 :=
√
3

16 − 22−k with
√
3

16 and dx with

√
3
8 + 21−k.

4. Closed balls. The bounds in Theorem 10, and in particular the inequality (32), require that the

balls considered by the algorithm be closed, instead of open like those used in the computation

of P s(S). Notice that since µ(∂B(x, d)) = 0 (see [19]), using open or closed balls in (14) does

not make a difference, and therefore neither does it make a difference in (28) or (36) if k is large
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enough. Only for small k do the results vary substantially. The use of closed balls implies that,

in the number of points that contribute to the µk-measure of the ball B(x, d), we have to consider

the number of points, tx, in U(x, d), and the number of points, Tx, in ∂B(x, d). Therefore we

have to replace µk(U(x, d)) = 2
3k
tx in [8] with µk(B(x, d)) = 2

3k
(tx + Tx).

3.2 Numerical results

Table 1 shows the algorithm’s output from the fifth to the fourteenth iteration. The output of the

algorithm for k = 14 together with Theorem 10 gives the estimate C14 = 1.004903 of Cs(S), and a 100%

confidence interval for Cs(S), [C inf
14 , C

sup
14 ] = [1.003109, 1.005611], with a length of less than 0.002502.

Moreover, for every iteration k the selected ball, B(xk, dk), has the same centre xk := f010(z2) =

( 5
16 ,

√
3

16 ) and its radius, dk, varies slightly for any k in the range k = 11, ..., 14. The stability observed

indicates that the inverse µk-density of the ball B(xk, 0.146) (the red colour ball in Fig. 3) results in

a good approximation to the minimum value in (14).

Regarding the stability of the error bounds for Cs(S), Table 1 shows that there are two fixed decimal

places in the values of the last three iterations of Csup
k , and a slightly slower stabilisation of C inf

k . This

is mainly due to the initially slow convergence to one of the terms Kk, which was also the reason why,

in the algorithm for P s(S), the convergence of P sup
k was slower than that of P inf

k (see Sec. 4.3 in [8]).

Since the values of Ck change at a slower rate from k = 10 on, and the lower and upper bounds of Ck

are arbitrarily close to Ck for large enough k, we can conjecture that Cs(S) ∼ C14 ∼ 1.0049.

More precise estimates for Cs(S) would require a refinement of the lower bound for Cs(S) or a

significant increment of the largest value taken by k, now fixed at kmax := 14. Regarding computational

time, the estimation of Ck, for any k, k ≤ kmax ∈ {10, 11, 12, 13, 14} requires 5 seconds, 46 seconds,

7 minutes, 67 minutes and 9.7 hours, respectively. It is worth noting that for k = 14 the diameter of

the k-th cylinders is small (2−14 ∼ 6 × 10−5) and the cardinality of the set of k-th cylinders is large

(314 = 4782969). This makes computationally challenging to significantly increase kmax. Additionally,

the algorithm used is not optimised for reducing the computation time, and it has run in a standard

personal computer. Better results can be obtained in a HPC (high-performance computing) system

with an optimised version of this algorithm.
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If we gather these results with the estimate given in [8] for P s(S), we obtain a quite complete

information of the total range of values of θsα(x, d), α ∈ {Cs⌊S , P s⌊S} .

In [8] what is obtained is the estimate P15 = 1.6683 for P s(S) at iteration k = 15, and balls

B(zk, dk) maximising (36) for k ∈ {6, ..., 15} were found. For k = 14, 15 the centres of these balls

are both the same zk := (0.5, 0), and their radii are dk ∼ 0.1605. Notice that the ball B(zk, 0.1605)

is µ-density equivalent to a ball centred at f010(z2), which is precisely the centre of the ball which

minimises (28), and with radius d ∼ 0.08. This ball is outlined in green in Fig. 3, together with the

red colour ball whose inverse density gives the estimate of Cs(S) at iteration k = 14.

The evolution of the inverse density (θsµ14
(f010(z2), d))

−1 as a function of the radius, d, is plot-

ted in Fig. 4. Notice that the minimum and maximum values of this function correspond to the

approximations Cs(S) ∼ 1.0049 and P s(S) ∼ 1.6683, respectively.

For a detailed discussion of the frontiers of the computation of metric measures see the section of

conclusions in [9].

4 Conclusions

The centred Hausdorff measure, Cs, and the packing measure, P s, form a dual pair in terms of which

several local and global properties of the spherical neighborhoods of a metric space can be efficiently

expressed (see [25], [24]). The computation of the particular values of Cs(S) achieved in this paper,

together with the computation of that of the packing measure, P s(S) in [8], complete a first step

in this direction, with relevant information (see Sec. 1.3) on the bounds of the spherical densities,

α(B(x, d))(2d)−s and their range of asymptotic variation, Spec(α, x) for α ∈ {µ,Cs⌊S , P s⌊S}.

A similar program can be developed for self-similar sets with SSC (see [31] and [9]). We have also

been able to develop this programme for the Sierpiński gasket, with does not satisfy SSC but it satisfies

OSC. In fact, our method makes the computational problem easier than that posed by self-similar sets

which satisfy SSC with small distances between their primary cylinders.

This is achieved through a careful geometric analysis of the Sierpiński triangle and the strategic

utilisation of its symmetries. Can the same method be applied to other self-similar sets in this situation?

In [38] we prove that the same procedure can be applied to the penta-Sierpiński gasket P. The
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method used there consists of a two-step process: In the search of balls of optimal density, we first

reduce the set of their centers and discard balls of large radius by using symmetries of P and then we

discard balls of small radius using internal homotheties. In [38] it is argumented how it seems likely

that the method can be applied to the whole family of IFS constructed through homotheties with fixed

points at the vertexes of regular polygons and with just touching 1-cylinders (primary cylinders with

only two intersection points with the two adjacent 1-cylinders).

We also think that the method could be applied to fractals as the Koch curve. An anonymous

referee pointed out that a natural family of self-similar sets with OSC to which our results could be

extended is that of post-critically finite (p.c.f.) self-similar sets. This conjecture turns out to be true

in the case of the penta-Sierpiński gasket P, and also, we think, in the case of the related family of

regular fractal polygons described above and the Koch curve, but we do not know whether the same

holds true for general p.c.f. self-similar sets.
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k dk C inf
k Ck Csup

k

5 0.125 0.409736 0.843750 2.700000

6 0.143205 0.622414 0.930364 1.255991

7 0.143205 0.790389 0.978694 1.141810

8 0.144690 0.894667 0.999143 1.068851

9 0.144690 0.945925 1.000593 1.035149

10 0.147354 0.975686 1.003735 1.016677

11 0.145596 0.990358 1.004556 1.011856

12 0.145834 0.997550 1.004691 1.007754

13 0.145957 1.001285 1.004867 1.006332

14 0.145957 1.003109 1.004903 1.005611

Table 1: Estimates of the centred measure of S.

Algorithm outputs rounded to six decimal places: to the smallest value for C inf
k , to the largest for Csup

k

and to the nearest for Ck and dk.
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Figure 1: Sierpiński gasket S.

Figure 2: A feasible open set R for S.

The rhombus R is the topological interior of the union of T and its reflection across the edge opposite

the point z2. Triangles T and Ti, i ∈ M. Altitudes hi of T through zi, i ∈ M, and altitude h4 of T0

through f2(z0).
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Figure 3: Optimal balls for the packing and centred measures of S.

Balls of minimum (in green) and maximum (in red) µ14-density.

Figure 4: Inverse of the density at the optimal point.

Graph of (θsµ14
(x∗

14, d))
−1 as a function of d with x∗

14 = f010(z2). The minimal value of (θsµ14
(x∗

14, d))
−1

corresponds to Cs(S) ∼ 1.0049 and the maximal one to P s(S) ∼ 1.6683.
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